Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A sufficient condition to extend polynomial results for the Maximum Independent Set Problem

Raffaele Mosca

Dipartimento di Economia, Universitá degli Studi "G. D'Annunzio", Pescara 65121, Italy

ARTICLE INFO

Article history: Received 14 April 2014 Received in revised form 7 October 2015 Accepted 12 October 2015 Available online 10 November 2015

Keywords: Maximum independent set problem Polynomial algorithms

ABSTRACT

The Maximum Weight Independent Set Problem (WIS) is a well-known NP-hard problem. A popular way to study WIS is to detect graph classes for which WIS can be solved in polynomial time, with particular reference to hereditary graph classes (i.e., defined by a hereditary graph property), or equivalently to \mathcal{F} -free graphs for a given graph family \mathcal{F} (i.e., graphs which are *F*-free for all $F \in \mathcal{F}$).

A tool to extend the results which show that for given hereditary graph classes the WIS problem can be solved in polynomial time is given by the following easy proposition: For any graph family \mathcal{F} , if WIS can be solved for \mathcal{F} -free graphs in polynomial time, then WIS can be solved for $K_1 + \mathcal{F}$ -free graphs (i.e., graphs which are $K_1 + F$ -free for all $F \in \mathcal{F}$) in polynomial time.

The main result of this paper is the following: A sufficient condition to extend the above proposition to $K_2 + \mathcal{F}$ -free graphs, and more generally to $lK_2 + \mathcal{F}$ -free graphs for any constant l (i.e., graphs which are $lK_2 + F$ -free for all $F \in \mathcal{F}$), is that \mathcal{F} -free graphs are *m*-plausible for a constant *m*, i.e., that for any \mathcal{F} -free graph *G* the family of those maximal independent sets *I* of *G* such that every vertex of *G* not in *I* has more than *m* neighbors in *I* can be computed in polynomial time. In this context a section is devoted to show that (for instance) chordal graphs are *m*-plausible for a constant *m*.

The proof of the main result is based on the idea/algorithm introduced by Farber to prove that every $2K_2$ -free graph has $O(n^2)$ maximal independent sets (Farber, 1989), which directly leads to a polynomial time algorithm to solve WIS for $2K_2$ -free graphs through a dynamic programming approach, and on some extensions of that idea/algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An *independent set* (or a *stable set*) of a graph *G* is a subset of pairwise nonadjacent vertices of *G*. An independent set of a graph *G* is *maximal* if it is not properly contained in any other independent set of *G*.

The Maximum Weight Independent Set Problem (WIS) is the following: Given a graph *G* and a weight function *w* on *V*(*G*), determine an independent set of *G* of maximum weight, where the weight of an independent set *I* is given by the sum of w(v) for $v \in I$. Let $\alpha_w(G)$ denote the maximum weight of any independent set of *G*. The WIS problem reduces to the *IS* problem if all vertices *v* have the same weight w(v) = 1.

The WIS problem is NP-hard [16]. It remains NP-hard under various restrictions, such as e.g. triangle-free graphs [29] (and more generally graphs with no induced cycle of given length), cubic graphs [15] and more generally *k*-regular graphs [13], planar graphs [17], graph classes defined by forbidding a finite set of induced subgraphs having a special structure [3]. It can

http://dx.doi.org/10.1016/j.dam.2015.10.023 0166-218X/© 2015 Elsevier B.V. All rights reserved.

E-mail address: r.mosca@unich.it.

be solved in polynomial time for various graph classes, such as e.g. P_4 -free graphs [7] by modular decomposition and more generally perfect graphs [18] by polyhedral combinatorics, claw-free graphs [9,25,27,28,32] (the recent fast algorithm of [9] is based on a decomposition theorem) and more generally fork-free graphs [2,20] by modular decomposition and apple-free graphs [6,4] by decomposition via clique separators, $2K_2$ -free graphs [10] by dynamic programming and more generally mK_2 -free graphs for any fixed *m* (by combining an algorithm generating all maximal independent sets of a graph [33] and a polynomial upper bound on the number of maximal independent sets in mK_2 -free graphs [1,11,30]), K_2 +claw-free graphs [22] by an extension of the approach for $2K_2$ -free graphs, and $2P_3$ -free graphs [23] similarly. Furthermore the WIS problem can be solved in polynomial time for P_5 -free graphs by minimal triangulations, as recently proved in [19].

As one can easily check, for any graph G we have

 $\alpha_w(G) = \max\{\alpha_w(G[V(G) \setminus N(v)]) : v \in V\}.$

Then the WIS problem for any graph *G* can be reduced to the same problem for the non-neighborhood of all vertices of *G*. Consequently:

Proposition 1. For any graph family \mathcal{F} , if (W)IS can be solved for \mathcal{F} -free graphs in polynomial time, then (W)IS can be solved for $K_1 + \mathcal{F}$ -free graphs in polynomial time. \Box

The aim of this paper is to try to study in which extent a result similar to Proposition 1 holds once we consider $K_2 + \mathcal{F}$ -free graphs instead of $K_1 + \mathcal{F}$ -free graphs, that is, in which extent the above considerations hold once we consider the non-neighborhood of edges instead of the non-neighborhood of vertices.

The main result of this paper is the following: A sufficient condition to extend Proposition 1 to $K_2 + \mathcal{F}$ -free graphs, and more generally to $lK_2 + \mathcal{F}$ -free graphs for any constant l, is that \mathcal{F} -free graphs are *m*-plausible for a constant *m*, i.e., that for any \mathcal{F} -free graph *G* the family of those maximal independent sets *l* of *G* such that every vertex of *G* not in *l* has more than *m* neighbors in *l* can be computed in polynomial time. In this context a section is devoted to show that (for instance) chordal graphs are *m*-plausible for a constant *m*.

The proof of the main result is based on the idea/algorithm introduced by Farber to prove that every $2K_2$ -free graph has $O(n^2)$ maximal independent sets [10], which directly leads to a polynomial time algorithm to solve WIS for $2K_2$ -free graphs through a dynamic programming approach, and on some extensions of that idea/algorithm [21,22].

Basic notation

For any missing notation or reference let us refer the reader to [5].

For any graph *G*, let *V*(*G*) and *E*(*G*) denote respectively the vertex-set and the edge-set of *G*. For any vertex-set $U \subseteq V(G)$, let $N_G(U) = \{v \in V(G) \setminus U: v \text{ is adjacent to some } u \in U\}$ be the *neighborhood of U* in *G*, and $A_G(U) = V(G) \setminus (U \cup N(U))$ be the *antineighborhood* or *non-neighborhood of U* in *G*. If $U = \{u_1, \ldots, u_k\}$, then let us simply write $N_G(u_1, \ldots, u_k)$ instead of $N_G(U)$, and $A_G(u_1, \ldots, u_k)$ instead of $A_G(U)$. For any subset $U \subseteq V(G)$ let G[U] be the subgraph of *G* induced by *U*. For any vertex $v \in V(G)$ and for any subset $U \subset V(G)$ (with $v \notin U$), let us say that: *vcontactsU* if *v* is adjacent to some vertex of *U*, *vdominatesU* if *v* is adjacent to each vertex of *U*. A *component of G* is the vertex set of a maximal connected subgraph of *G*. A component of *G* is trivial if it is a singleton, and *nontrivial* otherwise. A *clique* of *G* is a set of pairwise adjacent vertices of *G*.

A graph *G* is *H*-free if *G* contains no induced subgraph isomorphic to a given graph *H*; in particular, *H* is called a forbidden induced subgraph of *G*. Given two graphs *G* and *F*, let G + F denote the disjoint union of *G* and *F*; in particular, $IG = G + G + \cdots + G$ is the disjoint union of *I* copies of *G*.

Given a graph family \mathcal{F} , let us say that: a graph is \mathcal{F} -free if it is F-free for all $F \in \mathcal{F}$; a graph is $K_1 + \mathcal{F}$ -free if it is $K_1 + F$ -free for all $F \in \mathcal{F}$; a graph is $lK_2 + \mathcal{F}$ -free, for any constant l, if it is $lK_2 + F$ -free for all $F \in \mathcal{F}$.

The following specific graphs are mentioned herein. A K_n is a complete graph of n vertices. A P_k has vertices v_1, v_2, \ldots, v_k and edges $v_j v_{j+1}$ for $1 \le j < k$. A C_k has vertices v_1, v_2, \ldots, v_k and edges $v_j v_{j+1}$ for $1 \le j < k$ and $v_k v_1$. A $K_{1,p}$ is the graph formed by an independent set I of p vertices, plus one vertex v which dominates I: a $K_{1,p}$ is also called a *star*, with *center* the vertex v, and with *leaves* the vertices of I. A $Y_{m,m}$ is the graph formed by two disjoint stars $K_{1,m}$ plus one vertex which is adjacent to the centers of such stars. A *claw* has vertices a, b, c, d, and edges ab, ac, ad (then a claw is a $K_{1,3}$). A fork has vertices a, b, c, d, e, and edges ab, ac, ad, de (then a fork contains a claw as induced subgraph). A *chordal* graph is a C_k -free graph for all $k \ge 4$.

For a graph *G* a vertex-ordering (v_1, v_2, \ldots, v_n) of *G* is a total ordering of the vertices of *G*.

2. Independent sets in 2K₂-free graphs

Let us report from [22] an algorithm, namely Algorithm Alpha, which formalizes the aforementioned idea/algorithm introduced by Farber [10] and which is the basis of all algorithms presented in the next sections.

The subsequent Algorithm Alpha, for any input $2K_2$ -free graph *G*, produces a family δ of subsets of V(G) each inducing an independent set of *G*, which can be computed in polynomial time (i.e., $O(n^3)$) and which contains polynomially many members (i.e., $O(n^2)$), such that each maximal independent set of *G* equals to some member of δ .

For a graph *G* and for a vertex-ordering $(v_1, v_2, ..., v_n)$ of *G* let us denote by G_i the subgraph of *G* induced by vertices $v_1, v_2, ..., v_i$.

Download English Version:

https://daneshyari.com/en/article/4949902

Download Persian Version:

https://daneshyari.com/article/4949902

Daneshyari.com