
Future Generation Computer Systems 78 (2018) 176–190

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A lightweight plug-and-play elasticity service for self-organizing
resource provisioning on parallel applications
Rodrigo da Rosa Righi a,∗, Vinicius Facco Rodrigues a, Gustavo Rostirolla a,
Cristiano André da Costa a, Eduardo Roloff b, Philippe Olivier Alexandre Navaux b

a Applied Computing Graduate Program, UNISINOS, Brazil
b Parallel and Distributed Processing Group, UFRGS, Brazil

h i g h l i g h t s

• We are proposing a lightweight plug-and-play elasticity service for self-organizing resource provisioning.
• Based on the TCP (Transmission Control Protocol) congestion control, we propose an algorithm named Live Thresholding (LT).
• The results highlight performance competitiveness in terms of application time (performance) and cost (performance × energy) metrics.
• This article presented the Helpar model, which can be seen as an elasticity service for HPC applications.

a r t i c l e i n f o

Article history:
Received 29 March 2016
Received in revised form
8 December 2016
Accepted 12 February 2017
Available online 16 February 2017

Keywords:
Cloud elasticity service
High-performance computing
Live Thresholding
Resource management
Self-organizing

a b s t r a c t

Today cloud elasticity can bring benefits to parallel applications, besides the traditional targets including
Web and critical-business demands. This consists in adapting the number of resources and processes
at runtime, so users do not need to worry about the best choice for them beforehand. To accomplish
this, the most common approaches use threshold-based reactive elasticity or time-consuming proactive
elasticity. However, both present at least one problem related to the need of a previous user experience,
lack on handling load peaks, completion of parameters or design for a specific infrastructure andworkload
setting. In this context, we developed a hybrid elasticity service for master–slave parallel applications
named Helpar. The proposal presents a closed control loop elasticity architecture that adapts at runtime
the values of lower and upper thresholds. The main scientific contribution is the proposition of the Live
Thresholding (LT) technique for controlling elasticity. LT is based on the TCP congestion algorithm and
automatically manages the value of the elasticity bounds to enhance better reactiveness on resource
provisioning. The idea is to provide a lightweight plug-and-play service at the PaaS (Platform-as-a-
Service) level of a cloud, in which users are completely unaware of the elasticity feature, only needing
to compile their applications with Helpar prototype. For evaluation, we used a numerical integration
application and OpenNebula to compare the Helpar execution against two scenarios: a set of static
thresholds and a non-elastic application. The results present the lightweight feature of Helpar, besides
highlighting its performance competitiveness in terms of application time (performance) and cost
(performance × energy) metrics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has been gaining increasing adherence
particularly because of it presents an easier way to auto-
scale systems [1]. The elasticity service is better represented
on Web-based business-critical systems, which must satisfy

∗ Corresponding author.
E-mail address: rrrighi@unisinos.br (R. da Rosa Righi).

certain service level agreement (SLA), e.g., upper bounds on user
perceived response time [2–4]. Besides acting on performance
and energy saving issues, horizontal and/or vertical elasticity
actions are also especially pertinent on dynamic environments,
where human intervention is becoming more and more difficult
or even impossible [5]. In addition to the aforementioned
client–server target, cloud elasticity is being more and more
perceived as a key service to support the execution of HPC (High
Performance Computing) applications. Traditionally, these kind of
applications run on clusters or even in grid architectures: both

http://dx.doi.org/10.1016/j.future.2017.02.023
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.02.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.02.023&domain=pdf
mailto:rrrighi@unisinos.br
http://dx.doi.org/10.1016/j.future.2017.02.023


R. da Rosa Righi et al. / Future Generation Computer Systems 78 (2018) 176–190 177

have a fixed number of resources that must be maintained in
terms of infrastructure configuration, scheduling tool and energy
consumption. Besides hiding these procedures from programmers,
an elasticity service when integrated with parallel applications
can reveal one of its main contributions for the HPC context: self-
organizing the number of resources (and processes or threads,
consequently) in accordance with application’s demands. Defining
the exact number of processes is decisive on getting better
performance, being sometimes estimated by hand through several
tuning executions [6]. First, either short or large value will not
efficiently explore the distributed system. Second, a fixed value
cannot fit irregular applications, in which the workload varies
during execution and/or occasionally is not predictable in advance.

Deciding the right amount of cloud computing resources to
execute a parallel application is a double-edged sword, which
may lead to either under-provisioning or over-provisioning
situations [7,8]. These application-resource mappings are results
of saturation or waste of resources, and are among the most
significant challenges cloud elasticity clients are facedwith. Today,
most of the elasticity control strategies can be classified as either
being reactive or proactive (also named by some authors as
predictive) [5,7,9,10]. For the first case, typically users define
an upper bound tu and a lower bound tl in an ad-hoc manner
over a target metric (e.g., CPU utilization level, throughput and
average response time) to trigger, respectively, the activation and
deactivation of a certain number of resources [6]. This threshold-
based technique is the most used in Web-based commercial
auto-scaling systems: its simplicity and intuitive nature drive
this trend [3,11]. On the other hand, a proactive approach
employs prediction techniques to anticipate the behavior of
the system (its load) and thereby decide the reconfiguration
actions. This capability in turn will enable the application to be
ready to handle the load increase when it actually occurs. To
accomplish this approach, it is common to use machine learning
algorithms including Neural Network, Linear Regression, Support
Vector Machine, Reinforcement Learning and Pattern Matching
techniques [5]. To improve their accuracy on forecasting load
values, they are commonly combined with popular Time-Series-
based prediction techniques, such as Exponential Smoothing,
Moving Averages and Autoregressive models [7].

Although the word automatic is used on both autoscaling
mechanisms, current implementations commonly require some
kind of user input, preliminary configuration and/or use of
APIs (Application Programming Interface) to adjust resources as
workloads change [1,10]. For the reactive approach, in particular,
the tasks of choosing tl and tu and writing if-then rules are
not trivial and sometimes require a deep knowledge about the
behavior of the system over time [3,8,11]. This makes the accuracy
of the policy subjective and prone to uncertainty: the same set
of thresholds that fits fine a specific infrastructure/application
possibly causes undesired emergent behaviors, such as instability
and resource thrashing, on other settings [6,12]. In addition, other
problem of using thresholds is related to the lack of reactivity.
There are situations in which the cloud controller could anticipate
the (de)allocation of resources, but the resource configuration
remains the same due to bad choices on setting tl and tu. Although
not needing thresholds, the proactive elasticity mechanism, on
the other hand, is based on robust mathematical modeling and
commonly classified adversely as time-consuming for sensitive
performance-driven applications [7,13]. Besides runtime model
tuning, there is also the need of training the predictive technique
and previous execution of the application to optimize and select
parameters [5]. Finally, Netto et al. [6] affirm that proactive
elasticity strategies focus only on method accuracy and ignore
cloud technical limitations, besides being verymuch dependent on
workload characteristics and precise prediction models.

Considering the background,we areworkingwith the following
problem statement inmind: how to provide a totally automatic elas-
ticity service for parallel applications to bypass the aforementioned
drawbacks related to proactive and reactive approaches? To answer
it, we designed an elasticity model called Helpar (Hybrid Elastic-
ity Model for Parallel Applications). As a blending elastic approach,
Helpar acts as a resource provisioning service at the PaaS (Platform
as a Service) level of cloud joining the threshold-based lightweight
feature from the reactive approach and the prediction and feed-
back control from the proactive way. In our understanding, a cloud
scenario of ‘‘Complete Computing’’ must combine the keywords
automatic, effortless, proactiveness, performance and intelligence.
More precisely, our idea is to provide a plug-and-play parameter-
less model that on-the-fly adapts tl and tu in accordance with the
application’s demand to enhance the reactiveness of the system.
The current version ofHelpar addresses iterativemaster–slave par-
allel applications in such a way that users must only compile their
applications with the middleware developed as a product of the
Helparmodel. Consequently, this middleware is in charge of trans-
forming a non-elastic application in an elastic one without impos-
ing any API or previous execution. Helpar provides a controller
and a framework to manage resource (de)allocation and process
(dis)connection without blocking the application while elasticity
actions take place. Regarding the Helpar’s scientific contributions,
it brings the following additions in the state-of-the-art:

(i) A modeling of closed control-theoretic [14] infrastructure to
support the hybrid elasticity behavior on parallel cloud-based
applications;

(ii) Based on the TCP (Transmission Control Protocol) congestion
control, we propose an algorithm named Live Thresholding
(LT) to handle both application load projection and tl and tu
adaptivity.

We designed LT to provide both elasticity reactiveness and
application performance, but not neglecting energy consumption.
In other words, it is not pertinent to reduce the application time
by the half but spending four times more resources to accomplish
this. In this way, Helpar evaluation analyzes performance (time)
and energy consumption (resource), but also the cost metric
(time×resource) in comparisonswith non-elastic and pure reactive
elasticity approaches. We modeled and developed a numerical
integration parallel application that was executed against the
three aforesaid scenarios when varying the input workload
pattern as follows: Ascending, Descending, Wave and Constant.
In our understanding, despite using a single application, the
strategy of adopting multiple evaluation metrics, scenarios and
mainly different workloads was essential to discuss the resource
provisioning proposal.

The remainder of this article will first introduce related studies
in Section 2. Section 3 presents the Helpar model, revealing
how we developed the aforesaid contributions. The evaluation
methodology and the discussion of the results are described in
Sections 4 and 5. Finally, Section 6 expresses the final remarks,
highlighting the contributions with quantitative data.

2. Motivation and related work

Resource provisioning and cloud elasticity are topics of a vast
number of research and scientific articles. Here, we present a set
of initiatives both for Web and HPC applications that guide our
motivation and research gaps.



Download English Version:

https://daneshyari.com/en/article/4950269

Download Persian Version:

https://daneshyari.com/article/4950269

Daneshyari.com

https://daneshyari.com/en/article/4950269
https://daneshyari.com/article/4950269
https://daneshyari.com

