
Future Generation Computer Systems 68 (2017) 128–135

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Service composition based on multi-agent in the cooperative game
Yu Lei a,b,∗, Zhang Junxing a

a Inner Mongolia University, China
b State Key Laboratory of Networking and Switching Technology, BUPT, China

h i g h l i g h t s

• Agents obtain more learning experiences comparing with cooperative games for one fixed agent.
• Two-player cooperative games are used so that each agent can learn the strategy concurrently.
• Reinforcement learning is used in the multi-agents based service composition method.

a r t i c l e i n f o

Article history:
Received 30 September 2015
Received in revised form
16 May 2016
Accepted 27 June 2016
Available online 23 September 2016

Keywords:
Distributed artificial intelligence
Cooperative games
Multi-agent coordination
QoS
Reinforcement learning

a b s t r a c t

The principle of service composition based on multi-agent is that multi-agent can coordinate to reach
Pareto-optimal Nash equilibrium. Reinforcement learning algorithms can be used to deal with the
coordination problem in cooperative games. In this paper, the multi-agent coordination problems in
cooperative games for different user preference is investigated. In our case, each agent can represent
a user’s preference, and it finally learns a policy that is best fit for that user. Most previous works
study the deterministic gain of a state. However, in practical service environments, the gain may
be nondeterministic due to unstable Quality of Service (QoS). In addition, user preference should be
considered. To avoid local optimal solution, we let each agent randomly change interacting partners
in each iteration. Thus, an agent can learn its optimal strategy by interacting repeatedly with the rest
of agents representing different user preference. The experimental results show that our reinforcement
learning algorithm outperforms other learning methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the technique of distributed cooperative
multi-agent is used in many areas, such as computer science,
mobile robots, spacecraft, sensor networks, etc.

Formutual benefits, an agent should effectively coordinatewith
other agents in multi-agent systems. The cooperative outcomes
depend on an action the agent takes and actions taken by other
interacting agents. One main issue is how multi-agents sharing
common interests cooperatewith each other. In cooperativemulti-
agent systems, the agents share common interests, but their
reward functions could be either the same or different.

Generally, the beneficial increment of one agent also results
in the beneficial increment of the whole group. When agents
interact with each other to obtain the common profits, they have
to solve some difficulties in cooperative environments. Because

∗ Corresponding author at: Inner Mongolia University, China.
E-mail address: yuleiimu@sohu.com (Y. Lei).

many actions can be selected in the cooperative game, one major
challenge is how to select an equilibrium strategy for all agents.
In this situation, effective coordination for multiple optimal joint
actions between the agents is required. Because the cooperative
game could be nondeterministic, another challenge is how to deal
with the stochasticity. In this situation, agentsmust knowwhether
the received payoffs are caused by the interaction with other
agents or by the settings of the stochastic game.

Reinforcement learning is a kind of machine learning method,
which can obtain satisfactory solutions without knowing the
accurate system model [1]. Reinforcement learning algorithms
can be used in cooperative environments. Several multi-agent
reinforcement learning algorithms have been proposed recently.
However, most previous works use the Q -learning algorithm as
their basis and modify the Q -learning algorithm to change single-
agent environments to cooperative multi-agent environments. Q -
learning is a kind of Reinforcement Learning. In cooperative multi-
agent environments,most of researchers consider just two ormore
players. In the end of repeated game the agents learn an optimal
strategy by interacting with the same opponents.

http://dx.doi.org/10.1016/j.future.2016.06.039
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.06.039
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.06.039&domain=pdf
mailto:yuleiimu@sohu.com
http://dx.doi.org/10.1016/j.future.2016.06.039


Y. Lei, Z. Junxing / Future Generation Computer Systems 68 (2017) 128–135 129

A large number of agents, which may behave independently
and locally, do not have consciousness to interact with the other
specific agents. They do not pay much effort to choose interaction
target in some extent, and their actions are more or less random in
the training process.

In some situations, the interactions between agents may be
sparse. It is very possible that the interacting partners of the agent
randomly change. The consequence is that an optimal joint action
achieved by repeated coordinationwith one partner agentmay fail
if the agent interacts with a different partner agent in the future.
Therefore, each agent needs to learn its strategy by interactingwith
different opponents. In addition, each agent can represent a user’s
preference, and it finally learns a policy that is best fit for that
user. On behalf of the same preference of users, some agents may
interact frequently for a similar aim.

Recently the coordination policies in cooperative multi-agent
systems have been investigated. Besides the difficulties previously
mentioned, achieving optimal coordination where the interacting
partners are not fixed is more challenging. Non-fixed interacting
partners introduce the additional stochasticity.

We study the multi-agent coordination problem in this paper
The contributions of our work are as follows.

1. We propose a new agent selection strategy, where the partner
agent is selected randomly to interact from the large number of
agent population during each round. Comparing with repeated
cooperative games for one fixed agent, the agent in our case
can interact with more agents, thus it has more learning
experiences from other agents.

2. According to cooperative game theory, two-player cooperative
games are used to model the interactions of agents. To find
Pareto-optimal Nash equilibrium, the proposedmethod records
the history of actions to enable agents to learn the strategy
concurrently. Using multi-agents reinforcement learning we
propose a service composition method.

In Section 2, we review some background on reinforcement
learning. In Section 3, we study previous work of multi-agent
reinforcement learning in cooperative environments. In Section 4,
the coordination problem in cooperative games is introduced, and
we describe the multi-agent reinforcement learning algorithm. In
Section5, comparing other algorithms, the learningperformance of
our algorithm is presented. In Section 6, we summarize our paper.

2. Preliminaries

2.1. Reinforcement learning methods

Reinforcement Learning [1,2], which is a machine learning
method, is used for decision-making. An agent repetitively
interacts with the surroundings in a trial-and-error manner.
The surrounding environment provides rewards to the agent
when the agent performs actions. Through gaining the maximum
reward, Reinforcement Learning can learn an optimal strategy [3].
Unlike any unsupervised and supervised learning techniques,
Reinforcement Learning proceeds by sequentially interacting with
the surroundings instead of using a training set.

Though it is well suitable to multi-agent applications, this
learning method has its limits. It requires the knowledge of
a complete model for the surroundings so that the agent can
perform actions to affect the surroundings. In addition, the reward
depends on system states and applied actions. Unlike supervised
learning using a labeled set, Reinforcement Learningmaximize the
cumulative rewards [4,5].

Until now, several Reinforcement Learning algorithms have
been proposed such as TD(λ), Sarsa, Q -learning, etc. Most of them
use the Markov Decision Process (MDP). On the current state, the

agent makes a decision to choose an action, and the result is that it
transfers to a new state. A historical sequence of actions produces
a cumulative reward to show the quality of these actions.

Reinforcement Learning includes two learning styles: model-
free learning and model-based learning. Specifically, the agent
learns the optimal policy according to the transition and reward
functions [6], or the agent learns the policy without knowing the
transition and reward functions [7].

There are three basic methods to solve the Reinforcement
Learning problem. They are Temporal-Difference (TD) learning,
Monte Carlo method, and dynamic programming. Each of them
has its advantages and disadvantages. According to complete in-
formation of environment, dynamic programmingmethods use it-
erative mathematical formulations to obtain the solution. In con-
trast, Monte Carlo methods do not need a complete environmen-
tal model. Nevertheless, Monte Carlo methods learn the policy
based on episodes rather than actions. To take advantage of above
twomethods, Temporal-Differencemethods combineMonte Carlo
method with dynamic programming method. TD methods also do
not need a complete environmental model, and TD methods are
based on actions. However, its disadvantages are more complex to
analyze. In the following, we will specifically investigate a kind of
TD learning: Q -learning.

2.2. Q -learning

A Q -learning system includes three major parts: environment,
agent and policy. Environment, which an agent observes, provides
the agent with the current state st and the immediate reward
R(st , at), which is the result from the action at just executed by the
agent. The agent part [8] stores a table containing {Q (st , at)} and
an updating rule. The policy shows the agent should take which
action in a given state.

In the Q -learning algorithm, the agent need to learn an optimal
policy π : S → A. Given the current state s ∈ S, π tells the agent
which action a ∈ A to take tomaximize a cumulative reward in the
learning process. Given a policy π and a state st at time step t , the
value of st under π can be calculated as follows:

Vπ (st) = rt+1 + γ rt+2 + γ 2rt+3 + · · · (1)

where γ is the discount factor (0 < γ < 1). rt+1 is the immediate
reward at time t . Thus by calculating optimal value function:
Vπ (st), we can obtain an available optimal policyπ . Unfortunately,
the environmentmodel (e.g. reward function) is unknown inmany
practical problems, which means Eq. (1) cannot be calculated. As
mentioned earlier, we need the Q -learning in this case. In Eq. (2),
Q (st , at) is the maximum discounted cumulative reward achieved
by optimally taking action at from state st .

Q (st , at) = R (st , at)+ γ V (st+1) . (2)

After taking action at , st+1 is the next state from state st in
the deterministic environment. R(st , at) is the immediate reward
function. Because V (st+1) = max{Q (st+1, at+1)}, Eq. (2) can be
formulated as follows:

Q (st , at) = R (st , at)+ γ max
at+1

Q (st+1, at+1) . (3)

The ⟨st; at; rt; st+1⟩ tuples construct experience of the agent in
each iteration, forming a table of estimated Q (st , at) values. The
Q (st , at) values generally converge to their optimal values after
repetitively trying different state–action pairs.

One of advantages of Q -learning method is that we can obtain
the optimal policy even by randomly performing a sequence of
actions, if only we try state–action pairs constantly. This feature
makes Q -learning the simplest and model-free learning method.
However, because the large number of state–action pairs is a



Download English Version:

https://daneshyari.com/en/article/4950491

Download Persian Version:

https://daneshyari.com/article/4950491

Daneshyari.com

https://daneshyari.com/en/article/4950491
https://daneshyari.com/article/4950491
https://daneshyari.com

