
Information Processing Letters 129 (2018) 11–15

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A hardness result and new algorithm for the longest common

palindromic subsequence problem

Shunsuke Inenaga a,∗, Heikki Hyyrö b

a Department of Informatics, Kyushu University, Japan
b Faculty of Natural Sciences, University of Tampere, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2017
Accepted 29 August 2017
Available online 11 September 2017
Communicated by R. Uehara

Keywords:
Algorithms
String processing
Palindromic subsequences
Longest common subsequences
Nesting rectangles

The 2-LCPS problem, first introduced by Chowdhury et al. (2014) [17], asks one to compute
(the length of) a longest common palindromic subsequence between two given strings A
and B . We show that the 2-LCPS problem is at least as hard as the well-studied longest
common subsequence problem for four strings. Then, we present a new algorithm which
solves the 2-LCPS problem in O (σ M2 +n) time, where n denotes the length of A and B , M
denotes the number of matching positions between A and B , and σ denotes the number of
distinct characters occurring in both A and B . Our new algorithm is faster than Chowdhury
et al.’s sparse algorithm when σ = o(log2 n log logn).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given k ≥ 2 string, the longest common subsequence prob-
lem for k strings (k-LCS problem for short) asks to compute
(the length of) a longest string that appears as a subse-
quence in all the k strings. Whilst the problem is known
to be NP-hard for arbitrary many strings [1], it can be
solved in polynomial time for a constant number of strings
(namely, when k is constant).

The 2-LCS problem that concerns two strings is the
most basic, but also the most widely studied and used,
form of longest common subsequence computation. In-
deed, the 2-LCS problem and similar two-string variants
are central topics in theoretical computer science and have
applications e.g. in computational biology, spelling correc-
tion, optical character recognition and file versioning. The
fundamental solution to the 2-LCS problem is based on
dynamic programming [2] and takes O (n2) for two given

* Corresponding author.
E-mail addresses: inenaga@inf.kyushu-u.ac.jp (S. Inenaga),

heikki.hyyro@uta.fi (H. Hyyrö).

strings of length n.1 Using the so-called “Four Russians”
technique [3], one can solve the 2-LCS problem for strings
over a constant alphabet in O (n2/ log2 n) time [4]. For a
non-constant alphabet, the 2-LCS problem can be solved in
O (n2 log log n/ log2 n) time [5]. Despite much effort, these
have remained as the best known algorithms to the 2-LCS
problem, and no strongly sub-quadratic time 2-LCS algo-
rithm is known. Moreover, the following conditional lower
bound for the 2-LCS problem has been shown: For any
constant λ > 0, an O (n2−λ)-time algorithm which solves
the 2-LCS problem over an alphabet of size 7 refutes the
so-called strong exponential time hypothesis (SETH) [6].

In many applications it is reasonable to incorporate ad-
ditional constraints to the LCS problem (see e.g. [7–16]).
Along this line of research, Chowdhury et al. [17] intro-
duced the longest common palindromic subsequence problem
for two strings (2-LCPS problem for short), which asks one
to compute (the length of) a longest common subsequence

1 For simplicity, we assume that input strings are of equal length n.
However, all algorithms mentioned and proposed in this paper are appli-
cable for strings of different lengths.

http://dx.doi.org/10.1016/j.ipl.2017.08.006
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.08.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:heikki.hyyro@uta.fi
http://dx.doi.org/10.1016/j.ipl.2017.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.08.006&domain=pdf

12 S. Inenaga, H. Hyyrö / Information Processing Letters 129 (2018) 11–15

between strings A and B with the additional constraint
that the subsequence must be a palindrome. The problem
is equivalent to finding (the length of) a longest palin-
drome that appears as a subsequence in both strings A
and B , and is motivated for biological sequence compar-
ison [17]. Chowdhury et al. presented two algorithms for
solving the 2-LCPS problem. The first is a conventional dy-
namic programming algorithm that runs in O (n4) time and
space. The second uses sparse dynamic programming and
runs in O (M2 log2 n log log n + n) time and O (M2) space,2

where M is the number of matching position pairs be-
tween A and B .

The contribution of this paper is two-folds: Firstly, we
show a tight connection between the 2-LCPS problem and
the 4-LCS problem by giving a simple linear-time reduc-
tion from the 4-LCS problem to the 2-LCPS problem. This
means that the 2-LCPS problem is at least as hard as
the 4-LCS problem, and thus achieving a significant im-
provement on the 2-LCPS problem implies a breakthrough
on the well-studied 4-LCS problem, to which all exist-
ing solutions [18–22] require at least O (n4) time in the
worst case. Secondly, we propose a new algorithm for the
2-LCPS problem which runs in O (σ M2 + n) time and uses
O (M2 + n) space, where σ denotes the number of distinct
characters occurring in both A and B . We remark that our
new algorithm is faster than Chowdhury et al.’s sparse al-
gorithm with O (M2 log2 n log log n + n) running time [17]
when σ = o(log2 n log log n).

2. Preliminaries

Let � be an alphabet. An element of � is called a
character and that of �∗ is called a string. For any string
A = a1a2 · · ·an of length n, |A| denotes its length, that is,
|A| = n.

For any string A = a1 · · ·am , let AR denote the reverse
string of A, namely, AR = am · · ·a1. A string P is said to be
a palindrome iff P reads the same forward and backward,
namely, P = P R .

A string S is said to be a subsequence of another string
A iff there exist increasing positions 1 ≤ i1 < · · · < i|S| ≤
|A| in A such that S = ai1 · · ·ai|S| . In other words, S is a
subsequence of A iff S can be obtained by removing zero
or more characters from A.

A string S is said to be a common subsequence of k
strings (k ≥ 2) iff S is a subsequence of all the k strings.
S is said to be a longest common subsequence (LCS) of the k
strings iff other common subsequences of the k strings are
not longer than S . The problem of computing (the length
of) an LCS of k strings is called the k-LCS problem.

A string P is said to be a common palindromic subse-
quence of k strings (k ≥ 2) iff P is a palindrome and is a
subsequence of all these k strings. P is said to be a longest
common palindromic subsequence (LCPS) of the k strings iff

2 The original time bound claimed in [17] is O (M2 log2 n log logn), since
they assume that the matching position pairs are already computed. For
given strings A and B of length n each over an integer alphabet of poly-
nomial size in n, we can compute all matching position pairs of A and B
in O (M + n) time.

other common palindromic subsequences of the k strings
are not longer than P .

In this paper, we consider the following problem:

Problem 1 (The 2-LCPS problem). Given two strings A and B ,
compute (the length of) an LCPS of A and B .

For two strings A = a1 · · ·an and B = b1 · · ·bn , an or-
dered pair (i, j) with 1 ≤ i, j ≤ n is said to be a matching
position pair between A and B iff ai = b j . Let M be the
number of matching position pairs between A and B . We
can compute all the matching position pairs in O (n + M)

time for strings A and B over integer alphabets of polyno-
mial size in n.

3. Reduction from 4-LCS to 2-LCPS

In this section, we show that the 2-LCPS problem is at
least as hard as the 4-LCS problem.

Theorem 1. The 4-LCS problem can be reduced to the 2-LCPS
problem in linear time.

Proof. Let A, B , C , and D be four input strings for the
4-LCS problem. We wish to compute an LCS of all these
four strings. For simplicity, assume |A| = |B| = |C | = |D| =
n. We construct two strings X = AR Z B and Y = C R Z D of
length 4n +1 each, where Z = $2n+1 and $ is a single char-
acter which does not appear in A, B , C , or D . Then, since
Z is a common palindromic subsequence of X and Y , and
since |Z | = 2n +1 while |A| +|B| = |C | +|D| = 2n, any LCPS
of X and Y must be at least 2n + 1 long containing Z as a
substring. This implies that the alignment for any LCPS of
X and Y is enforced so that the two Z ’s in X and Y are
fully aligned. Since any LCPS of X and Y is a palindrome,
it must be of form T R Z T , where T is an LCS of A, B , C ,
and D . Thus, we can solve the 4-LCS problem by solving
the 2-LCPS problem. �
Example 1. Consider four strings A = aabbccc, B =
aabbcaa, C = aaabccc, and D = abcbbbb of length
7 each. Then, an LCPS of X = cccbbaa$15aabbcaa and
Y = cccbaaa$15abcbbbb is cba$15abc, which is ob-
tained by e.g., the following alignment:

Observe that abc is an LCS of A, B , C , and D .

4. A new algorithm for 2-LCPS

In this section, we present a new algorithm for the
2-LCPS problem.

4.1. Finding rectangles with maximum nesting depth

Our algorithm follows the approach used in the sparse
dynamic programming algorithm by Chowdhury et al. [17]:

Download English Version:

https://daneshyari.com/en/article/4950793

Download Persian Version:

https://daneshyari.com/article/4950793

Daneshyari.com

https://daneshyari.com/en/article/4950793
https://daneshyari.com/article/4950793
https://daneshyari.com

