A hardness result and new algorithm for the longest common palindromic subsequence problem

Shunsuke Inenaga ${ }^{\mathrm{a}, *}$, Heikki Hyyrö ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Informatics, Kyushu University, Japan
${ }^{\mathrm{b}}$ Faculty of Natural Sciences, University of Tampere, Finland

A R T I C L E I N F O

Article history:

Received 16 January 2017
Accepted 29 August 2017
Available online 11 September 2017
Communicated by R. Uehara

Keywords:

Algorithms
String processing
Palindromic subsequences
Longest common subsequences
Nesting rectangles

Abstract

The 2-LCPS problem, first introduced by Chowdhury et al. (2014) [17], asks one to compute (the length of) a longest common palindromic subsequence between two given strings A and B. We show that the 2-LCPS problem is at least as hard as the well-studied longest common subsequence problem for four strings. Then, we present a new algorithm which solves the 2-LCPS problem in $O\left(\sigma M^{2}+n\right)$ time, where n denotes the length of A and B, M denotes the number of matching positions between A and B, and σ denotes the number of distinct characters occurring in both A and B. Our new algorithm is faster than Chowdhury et al.'s sparse algorithm when $\sigma=o\left(\log ^{2} n \log \log n\right)$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given $k \geq 2$ string, the longest common subsequence problem for k strings (k-LCS problem for short) asks to compute (the length of) a longest string that appears as a subsequence in all the k strings. Whilst the problem is known to be NP-hard for arbitrary many strings [1], it can be solved in polynomial time for a constant number of strings (namely, when k is constant).

The 2-LCS problem that concerns two strings is the most basic, but also the most widely studied and used, form of longest common subsequence computation. Indeed, the 2-LCS problem and similar two-string variants are central topics in theoretical computer science and have applications e.g. in computational biology, spelling correction, optical character recognition and file versioning. The fundamental solution to the 2-LCS problem is based on dynamic programming [2] and takes $O\left(n^{2}\right)$ for two given

[^0]strings of length $n .{ }^{1}$ Using the so-called "Four Russians" technique [3], one can solve the 2-LCS problem for strings over a constant alphabet in $O\left(n^{2} / \log ^{2} n\right)$ time [4]. For a non-constant alphabet, the 2-LCS problem can be solved in $O\left(n^{2} \log \log n / \log ^{2} n\right)$ time [5]. Despite much effort, these have remained as the best known algorithms to the 2-LCS problem, and no strongly sub-quadratic time 2-LCS algorithm is known. Moreover, the following conditional lower bound for the 2-LCS problem has been shown: For any constant $\lambda>0$, an $O\left(n^{2-\lambda}\right)$-time algorithm which solves the 2-LCS problem over an alphabet of size 7 refutes the so-called strong exponential time hypothesis (SETH) [6].

In many applications it is reasonable to incorporate additional constraints to the LCS problem (see e.g. [7-16]). Along this line of research, Chowdhury et al. [17] introduced the longest common palindromic subsequence problem for two strings (2-LCPS problem for short), which asks one to compute (the length of) a longest common subsequence

[^1]between strings A and B with the additional constraint that the subsequence must be a palindrome. The problem is equivalent to finding (the length of) a longest palindrome that appears as a subsequence in both strings A and B, and is motivated for biological sequence comparison [17]. Chowdhury et al. presented two algorithms for solving the 2-LCPS problem. The first is a conventional dynamic programming algorithm that runs in $O\left(n^{4}\right)$ time and space. The second uses sparse dynamic programming and runs in $O\left(M^{2} \log ^{2} n \log \log n+n\right)$ time and $O\left(M^{2}\right)$ space, ${ }^{2}$ where M is the number of matching position pairs between A and B.

The contribution of this paper is two-folds: Firstly, we show a tight connection between the 2-LCPS problem and the 4 -LCS problem by giving a simple linear-time reduction from the 4 -LCS problem to the 2 -LCPS problem. This means that the 2-LCPS problem is at least as hard as the 4 -LCS problem, and thus achieving a significant improvement on the 2-LCPS problem implies a breakthrough on the well-studied 4-LCS problem, to which all existing solutions [18-22] require at least $O\left(n^{4}\right)$ time in the worst case. Secondly, we propose a new algorithm for the 2-LCPS problem which runs in $O\left(\sigma M^{2}+n\right)$ time and uses $O\left(M^{2}+n\right)$ space, where σ denotes the number of distinct characters occurring in both A and B. We remark that our new algorithm is faster than Chowdhury et al.'s sparse algorithm with $O\left(M^{2} \log ^{2} n \log \log n+n\right)$ running time [17] when $\sigma=o\left(\log ^{2} n \log \log n\right)$.

2. Preliminaries

Let Σ be an alphabet. An element of Σ is called a character and that of Σ^{*} is called a string. For any string $A=a_{1} a_{2} \cdots a_{n}$ of length $n,|A|$ denotes its length, that is, $|A|=n$.

For any string $A=a_{1} \cdots a_{m}$, let A^{R} denote the reverse string of A, namely, $A^{R}=a_{m} \cdots a_{1}$. A string P is said to be a palindrome iff P reads the same forward and backward, namely, $P=P^{R}$.

A string S is said to be a subsequence of another string A iff there exist increasing positions $1 \leq i_{1}<\cdots<i_{|S|} \leq$ $|A|$ in A such that $S=a_{i_{1}} \cdots a_{i|S|}$. In other words, S is a subsequence of A iff S can be obtained by removing zero or more characters from A.

A string S is said to be a common subsequence of k strings ($k \geq 2$) iff S is a subsequence of all the k strings. S is said to be a longest common subsequence (LCS) of the k strings iff other common subsequences of the k strings are not longer than S. The problem of computing (the length of) an LCS of k strings is called the k-LCS problem.

A string P is said to be a common palindromic subsequence of k strings ($k \geq 2$) iff P is a palindrome and is a subsequence of all these k strings. P is said to be a longest common palindromic subsequence (LCPS) of the k strings iff

[^2]other common palindromic subsequences of the k strings are not longer than P.

In this paper, we consider the following problem:
Problem 1 (The 2-LCPS problem). Given two strings A and B, compute (the length of) an LCPS of A and B.

For two strings $A=a_{1} \cdots a_{n}$ and $B=b_{1} \cdots b_{n}$, an ordered pair (i, j) with $1 \leq i, j \leq n$ is said to be a matching position pair between A and B iff $a_{i}=b_{j}$. Let M be the number of matching position pairs between A and B. We can compute all the matching position pairs in $O(n+M)$ time for strings A and B over integer alphabets of polynomial size in n.

3. Reduction from 4-LCS to 2-LCPS

In this section, we show that the 2-LCPS problem is at least as hard as the 4 -LCS problem.

Theorem 1. The 4-LCS problem can be reduced to the 2-LCPS problem in linear time.

Proof. Let A, B, C, and D be four input strings for the 4-LCS problem. We wish to compute an LCS of all these four strings. For simplicity, assume $|A|=|B|=|C|=|D|=$ n. We construct two strings $X=A^{R} Z B$ and $Y=C^{R} Z D$ of length $4 n+1$ each, where $Z=\$^{2 n+1}$ and $\$$ is a single character which does not appear in A, B, C, or D. Then, since Z is a common palindromic subsequence of X and Y, and since $|Z|=2 n+1$ while $|A|+|B|=|C|+|D|=2 n$, any LCPS of X and Y must be at least $2 n+1$ long containing Z as a substring. This implies that the alignment for any LCPS of X and Y is enforced so that the two Z 's in X and Y are fully aligned. Since any LCPS of X and Y is a palindrome, it must be of form $T^{R} Z T$, where T is an LCS of A, B, C, and D. Thus, we can solve the 4 -LCS problem by solving the 2-LCPS problem.

Example 1. Consider four strings $A=$ aabbccc, $B=$ aabbcaa, $C=$ aaabccc, and $D=$ abcbbbb of length 7 each. Then, an LCPS of $X=$ cccbbaa $\15 aabbcaa and $Y=$ cccbaaa $\15 abcbbbb is cba $\15 abc, which is obtained by e.g., the following alignment:

```
cccbbaa$ $ $ $ $ $ $ $ $ $ $ $ $ $ a abboca a
    |/ ||||||l|||||||||l/l
cccbaaa$$$$$$$$$$$$$$ $ abcbobb
```

Observe that abc is an LCS of A, B, C, and D.

4. A new algorithm for 2-LCPS

In this section, we present a new algorithm for the 2-LCPS problem.

4.1. Finding rectangles with maximum nesting depth

Our algorithm follows the approach used in the sparse dynamic programming algorithm by Chowdhury et al. [17]:

https://daneshyari.com/en/article/4950793

Download Persian Version:
https://daneshyari.com/article/4950793

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: inenaga@inf.kyushu-u.ac.jp (S. Inenaga), heikki.hyyro@uta.fi (H. Hyyrö).

[^1]: ${ }^{1}$ For simplicity, we assume that input strings are of equal length n. However, all algorithms mentioned and proposed in this paper are applicable for strings of different lengths.

[^2]: 2 The original time bound claimed in [17] is $O\left(M^{2} \log ^{2} n \log \log n\right)$, since they assume that the matching position pairs are already computed. For given strings A and B of length n each over an integer alphabet of polynomial size in n, we can compute all matching position pairs of A and B in $O(M+n)$ time.

