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The 2-LCPS problem, first introduced by Chowdhury et al. (2014) [17], asks one to compute 
(the length of) a longest common palindromic subsequence between two given strings A
and B . We show that the 2-LCPS problem is at least as hard as the well-studied longest 
common subsequence problem for four strings. Then, we present a new algorithm which 
solves the 2-LCPS problem in O (σ M2 +n) time, where n denotes the length of A and B , M
denotes the number of matching positions between A and B , and σ denotes the number of 
distinct characters occurring in both A and B . Our new algorithm is faster than Chowdhury 
et al.’s sparse algorithm when σ = o(log2 n log logn).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given k ≥ 2 string, the longest common subsequence prob-
lem for k strings (k-LCS problem for short) asks to compute 
(the length of) a longest string that appears as a subse-
quence in all the k strings. Whilst the problem is known 
to be NP-hard for arbitrary many strings [1], it can be 
solved in polynomial time for a constant number of strings 
(namely, when k is constant).

The 2-LCS problem that concerns two strings is the 
most basic, but also the most widely studied and used, 
form of longest common subsequence computation. In-
deed, the 2-LCS problem and similar two-string variants 
are central topics in theoretical computer science and have 
applications e.g. in computational biology, spelling correc-
tion, optical character recognition and file versioning. The 
fundamental solution to the 2-LCS problem is based on 
dynamic programming [2] and takes O (n2) for two given 
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strings of length n.1 Using the so-called “Four Russians” 
technique [3], one can solve the 2-LCS problem for strings 
over a constant alphabet in O (n2/ log2 n) time [4]. For a 
non-constant alphabet, the 2-LCS problem can be solved in 
O (n2 log log n/ log2 n) time [5]. Despite much effort, these 
have remained as the best known algorithms to the 2-LCS 
problem, and no strongly sub-quadratic time 2-LCS algo-
rithm is known. Moreover, the following conditional lower 
bound for the 2-LCS problem has been shown: For any 
constant λ > 0, an O (n2−λ)-time algorithm which solves 
the 2-LCS problem over an alphabet of size 7 refutes the 
so-called strong exponential time hypothesis (SETH) [6].

In many applications it is reasonable to incorporate ad-
ditional constraints to the LCS problem (see e.g. [7–16]). 
Along this line of research, Chowdhury et al. [17] intro-
duced the longest common palindromic subsequence problem
for two strings (2-LCPS problem for short), which asks one 
to compute (the length of) a longest common subsequence 

1 For simplicity, we assume that input strings are of equal length n. 
However, all algorithms mentioned and proposed in this paper are appli-
cable for strings of different lengths.
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between strings A and B with the additional constraint 
that the subsequence must be a palindrome. The problem 
is equivalent to finding (the length of) a longest palin-
drome that appears as a subsequence in both strings A
and B , and is motivated for biological sequence compar-
ison [17]. Chowdhury et al. presented two algorithms for 
solving the 2-LCPS problem. The first is a conventional dy-
namic programming algorithm that runs in O (n4) time and 
space. The second uses sparse dynamic programming and 
runs in O (M2 log2 n log log n + n) time and O (M2) space,2

where M is the number of matching position pairs be-
tween A and B .

The contribution of this paper is two-folds: Firstly, we 
show a tight connection between the 2-LCPS problem and 
the 4-LCS problem by giving a simple linear-time reduc-
tion from the 4-LCS problem to the 2-LCPS problem. This 
means that the 2-LCPS problem is at least as hard as 
the 4-LCS problem, and thus achieving a significant im-
provement on the 2-LCPS problem implies a breakthrough 
on the well-studied 4-LCS problem, to which all exist-
ing solutions [18–22] require at least O (n4) time in the 
worst case. Secondly, we propose a new algorithm for the 
2-LCPS problem which runs in O (σ M2 + n) time and uses 
O (M2 + n) space, where σ denotes the number of distinct 
characters occurring in both A and B . We remark that our 
new algorithm is faster than Chowdhury et al.’s sparse al-
gorithm with O (M2 log2 n log log n + n) running time [17]
when σ = o(log2 n log log n).

2. Preliminaries

Let � be an alphabet. An element of � is called a 
character and that of �∗ is called a string. For any string 
A = a1a2 · · ·an of length n, |A| denotes its length, that is, 
|A| = n.

For any string A = a1 · · ·am , let AR denote the reverse 
string of A, namely, AR = am · · ·a1. A string P is said to be 
a palindrome iff P reads the same forward and backward, 
namely, P = P R .

A string S is said to be a subsequence of another string 
A iff there exist increasing positions 1 ≤ i1 < · · · < i|S| ≤
|A| in A such that S = ai1 · · ·ai|S| . In other words, S is a 
subsequence of A iff S can be obtained by removing zero 
or more characters from A.

A string S is said to be a common subsequence of k
strings (k ≥ 2) iff S is a subsequence of all the k strings. 
S is said to be a longest common subsequence (LCS) of the k
strings iff other common subsequences of the k strings are 
not longer than S . The problem of computing (the length 
of) an LCS of k strings is called the k-LCS problem.

A string P is said to be a common palindromic subse-
quence of k strings (k ≥ 2) iff P is a palindrome and is a 
subsequence of all these k strings. P is said to be a longest 
common palindromic subsequence (LCPS) of the k strings iff 

2 The original time bound claimed in [17] is O (M2 log2 n log logn), since 
they assume that the matching position pairs are already computed. For 
given strings A and B of length n each over an integer alphabet of poly-
nomial size in n, we can compute all matching position pairs of A and B
in O (M + n) time.

other common palindromic subsequences of the k strings 
are not longer than P .

In this paper, we consider the following problem:

Problem 1 (The 2-LCPS problem). Given two strings A and B , 
compute (the length of) an LCPS of A and B .

For two strings A = a1 · · ·an and B = b1 · · ·bn , an or-
dered pair (i, j) with 1 ≤ i, j ≤ n is said to be a matching 
position pair between A and B iff ai = b j . Let M be the 
number of matching position pairs between A and B . We 
can compute all the matching position pairs in O (n + M)

time for strings A and B over integer alphabets of polyno-
mial size in n.

3. Reduction from 4-LCS to 2-LCPS

In this section, we show that the 2-LCPS problem is at 
least as hard as the 4-LCS problem.

Theorem 1. The 4-LCS problem can be reduced to the 2-LCPS 
problem in linear time.

Proof. Let A, B , C , and D be four input strings for the 
4-LCS problem. We wish to compute an LCS of all these 
four strings. For simplicity, assume |A| = |B| = |C | = |D| =
n. We construct two strings X = AR Z B and Y = C R Z D of 
length 4n +1 each, where Z = $2n+1 and $ is a single char-
acter which does not appear in A, B , C , or D . Then, since 
Z is a common palindromic subsequence of X and Y , and 
since |Z | = 2n +1 while |A| +|B| = |C | +|D| = 2n, any LCPS 
of X and Y must be at least 2n + 1 long containing Z as a 
substring. This implies that the alignment for any LCPS of 
X and Y is enforced so that the two Z ’s in X and Y are 
fully aligned. Since any LCPS of X and Y is a palindrome, 
it must be of form T R Z T , where T is an LCS of A, B , C , 
and D . Thus, we can solve the 4-LCS problem by solving 
the 2-LCPS problem. �
Example 1. Consider four strings A = aabbccc, B =
aabbcaa, C = aaabccc, and D = abcbbbb of length 
7 each. Then, an LCPS of X = cccbbaa$15aabbcaa and 
Y = cccbaaa$15abcbbbb is cba$15abc, which is ob-
tained by e.g., the following alignment:

Observe that abc is an LCS of A, B , C , and D .

4. A new algorithm for 2-LCPS

In this section, we present a new algorithm for the 
2-LCPS problem.

4.1. Finding rectangles with maximum nesting depth

Our algorithm follows the approach used in the sparse 
dynamic programming algorithm by Chowdhury et al. [17]: 
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