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The Bloom filter is a simple random binary data structure which can be efficiently used 
for approximate set membership testing. When testing for membership of an object, the 
Bloom filter may give a false positive, whose probability is the main performance figure 
of the structure. We complete and extend the analysis of the Bloom filter available in the 
literature by means of the γ -transform approach. Known results are confirmed and new 
results are provided, including the variance of the number of bits set to 1 in the filter. 
We consider the choice of bits to be set to 1 when an object is inserted both with and 
without replacement, in what we call standard and classic Bloom filter, respectively. Simple 
iterative schemes for the computation of the false positive probability and a new non-
iterative approximation, taking into account the variance of bits set to 1, are also provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Bloom filter [1] is a simple random data structure 
which can be efficiently used for approximate set member-
ship testing. Considering n objects oi ∈ O (i ∈ {1..n}) to be 
inserted in a Bloom filter made of m bits initially set to 0, 
k independent hash functions h j : O  → {1..m} ( j ∈ {1..k})
are used to map each object into bit positions to be set to 
1 in the filter. In order to test the membership of an ob-
ject o ∈ O to the set {o1, . . . , on}, the k hash functions can 
be applied to o: in case at least one maps o to the posi-
tion of a bit still 0 in the filter, then the membership can 
be excluded. If o is mapped to bits all set to 1, then o can 
be one of the objects in the set but we can also be in the 
presence of a false positive. A low False Positive Probability 
(FPP) is, thus, a quality figure of the filter that has to be 
minimized via a suitable choice and tuning of the parame-
ters (m, n, k).

In the standard Bloom filter usually considered in the 
recent literature and in the application practice, there are 
no constraints imposed to the values generated by the k
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hash functions, so that the same values can be repeatedly 
generated and less than k bits can be set by the insertion 
of an object in the filter. In this work, we also consider the 
variant initially proposed by Bloom [1] in which, for each 
object, the k hash functions always generate k distinct val-
ues and, thus, exactly k bits are set in the filter, as required 
for the classic superimposed coding [9]. Hence, we will call 
such variant the classic Bloom filter (if the hash functions 
have disjoint ranges of m/k consecutive bits, this variant 
corresponds to what has been called partitioned Bloom fil-
ter in [7]). Notice that the adoption of a classic Bloom filter 
does not give rise to significant additional computational 
costs, with respect to a standard Bloom filter, by exploiting 
the techniques introduced in [7] to avoid hash collisions.

1.1. Background on approximate analysis

After all objects have been inserted, the probability that 
one bit of the standard Bloom filter is still 0 can be eval-
uated as (1 − 1/m)kn , being the selection of bits to be set 
with replacement, either with respect to the objects and 
with respect to the hash functions. If X is a r.v. repre-
senting the total number of bits set to 1 in the filter, its 
expected value is accordingly:
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E[X] = m

[
1 −

(
1 − 1

m

)kn
]

(1)

The main merit figure of the Bloom filter is the False 
Positive Probability (FPP) that can be computed as the 
probability that an object non-belonging to {o1, . . . , on} is 
hashed to only positions with bits set to 1 in the filter. 
As the bit positions can be chosen with replacement, the 
probability of a false positive conditioned to a number 
X = x of bits set to 1 in the standard Bloom filter is given 
by:

Pr(FP|X = x) =
( x

m

)k
(2)

Then the exact value of the FPP can be computed indeed 
according to the Total Probability theorem as:

FPP =
m∑

x=0

Pr(FP|X = x)Pr(X = x)

=
m∑

x=0

f (x)Pr(FP|X = x) (3)

where f (x) is the probability mass function of X . Since X
can be shown (e.g., via application of the Azuma–Hoeffding 
inequality [8, Sec. 12.5.3]) to be strongly concentrated 
around its expected value, a commonly employed approx-
imation is to consider x deterministically equal to E[X], 
yielding:

FPP ≈ FPPA1 =
[

1 −
(

1 − 1

m

)kn
]k

(4)

Such approximation has been shown in [2] to be highly ac-
curate for large m values with small values of k. Moreover, 
since (1 − 1/m)m → 1/e when m grows, a further asymp-
totic approximation:

FPP ≈ FPPA2 =
(

1 − e−kn/m
)k

(5)

is also commonly used when m is large. FPPA2 is mini-
mized when k = (m/n) ln 2, corresponding to one half of 
the bits set to 1 in the Bloom filter.

No complete analysis of the classic (or partitioned) 
Bloom filter has been done yet. Kirsch and Mitzenmacher 
in [7] limit themselves to observe that it tends to have 
more 1’s than the standard Bloom filter and, thus, yields 
an higher FPP although their asymptotic behavior is the 
same.

In this paper, we will apply the γ -transform approach 
described in [5] and that we first introduced in [4] to the 
analysis both of the standard and of the classic Bloom fil-
ters. In this way, in Sec. 2, we will easily derive the exact 
probability mass function, expected value and variance of 
the number of bits set to 1, and the FPP of the standard 
and classic Bloom filters. We will also introduce two itera-
tive schemes for the direct computation of those FPPs and 
a new accurate non-iterative approximation for the esti-
mation of the FPP of the standard Bloom filter. For small 
Bloom filters, for which asymptotic approximations are not 
justified, a comparison between the FPPs of the standard 

and classic Bloom filters, the new approximation and the 
old ones can be found in Sec. 3. A Conclusion section will 
finally close the paper.

2. A new analysis of Bloom filters

In this Section, we exploit the γ -transform approach [4,
5] for the probabilistic characterization of the standard and 
classic Bloom filters. In a counting experiment where pos-
sible outcomes can be selected from a set with cardinality 
m, the γ -transform γ (y) of the probability mass function 
of the number of outcomes can be evaluated as the proba-
bility of selecting outcomes from a subset with cardinality 
y ≤ m only. In our case, we can consider as an outcome a 
bit set to 1 in the filter so that X represents the number 
of outcomes. Ready-made formulas will then allow us to 
derive from γ (y) the probability mass function of X , the 
expected value and variance of X .

2.1. Standard Bloom filter

Owing to the physical meaning of the γ -transform re-
called above [5, Th. 3], since in the standard Bloom filter 
selection of bits to be set to 1 is with replacement, we 
have γS (y) = (y/m)kn . Hence, using formulae (6), (13) and 
(14) of [5], we can derive in a straightforward way from 
γS (y) the probability mass function, expected value and 
variance of X , respectively, as:

f S(x) =
(

m

x

) x∑
j=0

(−1) j
(

x

j

)(
x − j

m

)kn

(6)

E[X] = m

[
1 −

(
1 − 1

m

)kn
]

(7)

σ 2
X = m

(
1 − 1

m

)kn

×
[

1 − m

(
1 − 1

m

)kn

+ (m − 1)

(
1 − 1

m − 1

)kn
]

(8)

The probability mass function f S (x) is the one we first de-
rived in [4] for a particular case of the “set union problem” 
and agrees with the expressions derived for the standard 
Bloom filter in [2,3], while E[X] in (7) is the same as in (1). 
As far as we know, no derivation of σ 2

X has been done 
by other authors. Notice that the explicit knowledge of σ 2

X
is a good indicator for evaluating how the distribution of 
X is actually concentrated around E[X] and, thus, of the 
goodness of the proposed approximations FPPA1 and FPPA2
(also for small m).

Using (3) with (6) and (2), the exact expression of the 
FPP for the standard Bloom filter can then be computed 
as:

FPPS =
m∑

x=0

( x

m

)k
(

m

x

) x∑
j=0

(−1) j
(

x

j

)(
x − j

m

)kn

(9)

which agrees with the expressions derived in [2,3] and is 
a rather complex formula to evaluate.
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