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The longest common extension problem is to preprocess a given string of length n into a 
data structure that uses S(n) bits on top of the input and answers in T (n) time the queries 
LCE(i, j) computing the length of the longest string that occurs at both positions i and j
in the input. We prove that the trade-off S(n)T (n) = �(n logn) holds in the non-uniform 
cell-probe model provided that the input string is read-only, each letter occupies a separate 
memory cell, S(n) = �(n), and the size of the input alphabet is at least 28�S(n)/n�. It is 
known that this trade-off is tight.

© 2017 Published by Elsevier B.V.

1. Introduction

Data structures for solving the so-called longest com-
mon extension (LCE) problem (sometimes referred to as the 
longest common prefix problem) play the central role in 
the wide range of string algorithms. In this problem we 
must preprocess an input string of length n so that one 
can answer the queries LCE(i, j) computing the length of 
the longest string that occurs at both positions i and j in 
the input. Since the existing solutions to this problem of-
ten, in practice particularly, constitute a bottleneck either 
in space or in time of the algorithms relying in their core 
on the LCE queries, many efforts have been made in the 
past decades to develop better LCE data structures.

In this paper we prove that the trade-off1 S(n)T (n) =
�(n log n) holds for any data structure that solves the LCE 
problem using S(n) bits of space (called additional space) 
on top of the input and T (n) time for the LCE queries, 
assuming that the input string is read-only, each letter 

E-mail address: dkosolobov@mail.ru.
1 For brevity, log denotes the logarithm with base 2.

occupies a separate memory cell, and S(n) = �(n) (such 
space is used in most applications of the LCE problem). 
For S(n) = �(n), this new trade-off improves by log n fac-
tor the trade-off S(n)T (n) = �(n) established by Bille et 
al. [2], who used a simple reduction to a lower bound ob-
tained by Brodal et al. [3] for the so-called range minimum 
queries problem.

Our result is proved in the cell-probe model [12], in 
which the computation is free and time is counted as the 
number of cells accessed (probed) by the query algorithm. 
The algorithm is also allowed to be non-uniform, i.e., we 
can have different algorithms for different sizes n of the 
input. We assume that each letter of the input string is 
an integer located in a separate memory cell and each 
cell can store any integer from the set {0, 1, . . . , n − 1}. 
Hence, the maximal size of the input alphabet is n; this 
is a common assumption justified in, e.g., [4]. However, 
our main theorem poses a more specific restriction: the 
size of the input alphabet must be at least 28�S(n)/n� . For 
instance, our trade-off is applicable for constant alpha-
bets if S(n) = �(n), but to apply the trade-off in the case 
S(n) = �(n

√
log n), we have to have an alphabet of at least 

2�(
√

log n) size.
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Overview of LCE data structures. The classical solutions for 
the LCE problem use �(n log n) bits of space and O (1)

time for queries (e.g., see [5,9]). In [1] Bille et al. pre-
sented a RAM data structure that solves the LCE problem 
using O (τ ) time for queries and O (

n log n
τ ) bits of addi-

tional space, where τ is a parameter such that 1 ≤ τ ≤ n. 
This result shows that our trade-off is tight and cannot 
be improved. The construction time of this data struc-
ture (in O (

n log n
τ ) bits of space) is O (n2+ε), which is un-

acceptably slow. In [15] Tanimura et al. proposed a data 
structure with significantly better O (nτ ) construction time 
within the same O (

n log n
τ ) bits of additional space but with 

slightly suboptimal query time O (τ min{logτ , log n
τ }).

Denote by σ the size of the input alphabet. Recently, 
Tanimura et al. [16] described a data structure that, for 
σ ≤ 2o(log n) , uses o(n log n) bits of additional space and 
O (1) time for LCE queries thus “surpassing” our trade-
off and showing the importance of the condition σ ≥
28�S(n)/n� . We believe also that our trade-off does not hold 
if the algorithm can read �(logσ n) consecutive letters 
of the input string in O (1) time packing them in one 
�(log n)-bit machine word; this model reflects the situa-
tion that one can often observe in practice.

All mentioned results consider applications in which 
the input string is treated as read-only. In practice, how-
ever, we usually need a data structure that provides fast 
access to the string and allows us to answer the LCE 
queries, but the space occupied by the string itself can 
be reorganized. The data structure of [6] using this model 
occupies O (

n log n
τ ) bits of additional space and answers 

LCE queries in O (log∗ n(log n
τ + τ log 3/ logσ n)) time, where 

τ is a parameter such that 1 ≤ τ ≤ n (however, this re-
sult still does not break our trade-off). The construction 
time for this structure (in O (

n log n
τ ) bits) is O (n(log∗ n +

log n
τ + log τ

logσ n )). In [14] Prezza described an “in-place” data 
structure2 that replaces n�logσ � bits occupied by the in-
put with a data structure that allows to retrieve any sub-
string of length m of the input in optimal O ( m

logσ n ) time 
and answers the LCE queries in O (log�) time, where �

is the result of the query.3 For his data structure, Prezza 
presents only a randomized construction algorithm work-
ing in O (n log n) expected time and O (n log n) bits of 
space.

In certain applications the exact accuracy of the LCE 
queries is less important than construction time, query 
time, and space. For such applications, several Monte Carlo 
data structures were developed: their construction algo-
rithm builds with high probability (i.e., with probability 
1 − 1

nc for any specified constant c > 0) a valid data struc-
ture answering any LCE query correctly but sometimes 
can produce a faulty data structure. Prezza [14] described 
a Monte Carlo version of his “in-place” data structure 

2 The data structure uses only negligible O (log2 n) bits of space on top 
of the input.

3 A similar result in [13] seems to be very practical, but its correctness 
in the RAM model, where n tends to infinity, relies on a questionable 
assumption that the natural density of the logarithms of the Mersenne 
primes is non-zero (this is required to process these primes in constant 
time with �(logn)-bit machine words).

that answers the LCE queries in O (log�) time and has 
a construction algorithm working in O ( n

logσ n ) expected 
time using the same memory, i.e., also “in-place”. Bille 
et al. [1] presented a Monte Carlo version of their data 
structure for read-only inputs that answers the LCE queries 
in O (τ ) time using O (

n log n
τ ) bits of additional space and 

has O (n log n
τ ) construction time (within the same space), 

where 1 ≤ τ ≤ n. Gawrychowski and Kociumaka [7, Th. 3.3]
described a modification of this Monte Carlo solution for 
read-only inputs that has the same optimal space and 
query time bounds but can be constructed in optimal O (n)

time.
Recently, several LCE data structures for compressed 

strings were developed. For a more detailed discussion on 
this topic, we refer the reader to [10,16] and references 
therein.

2. Main result

Preliminaries. A string s of length n over an alphabet � is a 
map {0, 1, . . . , n − 1} �→ �, where n is referred to as the 
length of s, denoted by |s|. We write s[i] for the ith letter 
of s. A string s[0]s[1] · · · s[ j] is a prefix of s. For any i and j, 
the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by 
[i.. j].

Theorem. In the non-uniform cell-probe model the trade-off 
S(n)T (n) = �(n log n) holds for any data structure that solves 
the LCE problem for a read-only string of length n using S(n)

bits of space and T (n) time for queries assuming that each in-
put letter occupies a separate cell, the size of the input alphabet 
is at least 28�S(n)/n� , and S(n) = �(n).

Proof. Without loss of generality, assume that T (n) ≥ 1. 
Suppose, for the sake of contradiction, that S(n)T (n) /∈
�(n log n). Then, there is an infinite set N of positive 
integers such that limn∈N

S(n)T (n)
n log n = 0. Hence, we obtain 

limn∈N
S(n)

n log n = 0. Therefore, there is a positive function 
ε(n) such that S(n) = ε(n)n log n for n ∈ N and ε(n) tends 
to 0 as n → +∞.

Let us first construct a family F of inputs for the subse-
quent analysis. Define σ = 28�ε(n) log n� . The input alphabet 
is [1..σ ]. Note that σ ≥ 28 for n > 1 and σ = 28�S(n)/n�
for n ∈ N . Since logσ = o(log n) and, consequently, σ < n
for sufficiently large n, each letter of the alphabet fits in 
one memory cell. Observe that, since S(n) = ε(n)n log n ≤
1
8 n logσ for n ∈ N , we are not able to encode the whole 
string in S(n) bits and answer the LCE queries without any 
access to the string.

Denote k = � 1
2 logσ n�. Since logσ = o(log n), we have 

k = �(
log n
log σ ) = ω(1). Therefore, k ≥ 1 for sufficiently large 

n. Let s1, s2, . . . , sσ k denote all strings of length k over the 
alphabet [1..σ ]. The family F consists of all strings of the 
form s1s2 · · · sσ k t , where t is a string of length n − kσ k

over the alphabet [1..σ ]. Since σ kk ≤ √
n log n, it is easy 

to verify that 1
2 n ≤ n − kσ k for n ≥ 28. Hence, we obtain 

|F | ≥ σ
1
2 n = 2

1
2 n log σ for n ≥ 28. For convenience, we as-

sume hereafter that min N ≥ 28.
By the pigeonhole principle, there is a subfamily I ⊆F

such that |I| ≥ |F |/2S(n) and, for any strings s, s′ ∈ I , 
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