
Information Processing Letters 125 (2017) 26–29

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Tight lower bounds for the longest common extension

problem

Dmitry Kosolobov

University of Helsinki, Helsinki, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2017
Received in revised form 11 May 2017
Accepted 11 May 2017
Available online 17 May 2017
Communicated by Marcin Pilipczuk

Keywords:
Longest common extension
Data structures
Trade-off
Lower bounds
Cell-probe model

The longest common extension problem is to preprocess a given string of length n into a
data structure that uses S(n) bits on top of the input and answers in T (n) time the queries
LCE(i, j) computing the length of the longest string that occurs at both positions i and j
in the input. We prove that the trade-off S(n)T (n) = �(n logn) holds in the non-uniform
cell-probe model provided that the input string is read-only, each letter occupies a separate
memory cell, S(n) = �(n), and the size of the input alphabet is at least 28�S(n)/n�. It is
known that this trade-off is tight.

© 2017 Published by Elsevier B.V.

1. Introduction

Data structures for solving the so-called longest com-
mon extension (LCE) problem (sometimes referred to as the
longest common prefix problem) play the central role in
the wide range of string algorithms. In this problem we
must preprocess an input string of length n so that one
can answer the queries LCE(i, j) computing the length of
the longest string that occurs at both positions i and j in
the input. Since the existing solutions to this problem of-
ten, in practice particularly, constitute a bottleneck either
in space or in time of the algorithms relying in their core
on the LCE queries, many efforts have been made in the
past decades to develop better LCE data structures.

In this paper we prove that the trade-off1 S(n)T (n) =
�(n log n) holds for any data structure that solves the LCE
problem using S(n) bits of space (called additional space)
on top of the input and T (n) time for the LCE queries,
assuming that the input string is read-only, each letter

E-mail address: dkosolobov@mail.ru.
1 For brevity, log denotes the logarithm with base 2.

occupies a separate memory cell, and S(n) = �(n) (such
space is used in most applications of the LCE problem).
For S(n) = �(n), this new trade-off improves by log n fac-
tor the trade-off S(n)T (n) = �(n) established by Bille et
al. [2], who used a simple reduction to a lower bound ob-
tained by Brodal et al. [3] for the so-called range minimum
queries problem.

Our result is proved in the cell-probe model [12], in
which the computation is free and time is counted as the
number of cells accessed (probed) by the query algorithm.
The algorithm is also allowed to be non-uniform, i.e., we
can have different algorithms for different sizes n of the
input. We assume that each letter of the input string is
an integer located in a separate memory cell and each
cell can store any integer from the set {0, 1, . . . , n − 1}.
Hence, the maximal size of the input alphabet is n; this
is a common assumption justified in, e.g., [4]. However,
our main theorem poses a more specific restriction: the
size of the input alphabet must be at least 28�S(n)/n� . For
instance, our trade-off is applicable for constant alpha-
bets if S(n) = �(n), but to apply the trade-off in the case
S(n) = �(n

√
log n), we have to have an alphabet of at least

2�(
√

log n) size.

http://dx.doi.org/10.1016/j.ipl.2017.05.003
0020-0190/© 2017 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.ipl.2017.05.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:dkosolobov@mail.ru
http://dx.doi.org/10.1016/j.ipl.2017.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.05.003&domain=pdf

D. Kosolobov / Information Processing Letters 125 (2017) 26–29 27

Overview of LCE data structures. The classical solutions for
the LCE problem use �(n log n) bits of space and O (1)

time for queries (e.g., see [5,9]). In [1] Bille et al. pre-
sented a RAM data structure that solves the LCE problem
using O (τ) time for queries and O (

n log n
τ) bits of addi-

tional space, where τ is a parameter such that 1 ≤ τ ≤ n.
This result shows that our trade-off is tight and cannot
be improved. The construction time of this data struc-
ture (in O (

n log n
τ) bits of space) is O (n2+ε), which is un-

acceptably slow. In [15] Tanimura et al. proposed a data
structure with significantly better O (nτ) construction time
within the same O (

n log n
τ) bits of additional space but with

slightly suboptimal query time O (τ min{logτ , log n
τ }).

Denote by σ the size of the input alphabet. Recently,
Tanimura et al. [16] described a data structure that, for
σ ≤ 2o(log n) , uses o(n log n) bits of additional space and
O (1) time for LCE queries thus “surpassing” our trade-
off and showing the importance of the condition σ ≥
28�S(n)/n� . We believe also that our trade-off does not hold
if the algorithm can read �(logσ n) consecutive letters
of the input string in O (1) time packing them in one
�(log n)-bit machine word; this model reflects the situa-
tion that one can often observe in practice.

All mentioned results consider applications in which
the input string is treated as read-only. In practice, how-
ever, we usually need a data structure that provides fast
access to the string and allows us to answer the LCE
queries, but the space occupied by the string itself can
be reorganized. The data structure of [6] using this model
occupies O (

n log n
τ) bits of additional space and answers

LCE queries in O (log∗ n(log n
τ + τ log 3/ logσ n)) time, where

τ is a parameter such that 1 ≤ τ ≤ n (however, this re-
sult still does not break our trade-off). The construction
time for this structure (in O (

n log n
τ) bits) is O (n(log∗ n +

log n
τ + log τ

logσ n)). In [14] Prezza described an “in-place” data
structure2 that replaces n�logσ � bits occupied by the in-
put with a data structure that allows to retrieve any sub-
string of length m of the input in optimal O (m

logσ n) time
and answers the LCE queries in O (log�) time, where �

is the result of the query.3 For his data structure, Prezza
presents only a randomized construction algorithm work-
ing in O (n log n) expected time and O (n log n) bits of
space.

In certain applications the exact accuracy of the LCE
queries is less important than construction time, query
time, and space. For such applications, several Monte Carlo
data structures were developed: their construction algo-
rithm builds with high probability (i.e., with probability
1 − 1

nc for any specified constant c > 0) a valid data struc-
ture answering any LCE query correctly but sometimes
can produce a faulty data structure. Prezza [14] described
a Monte Carlo version of his “in-place” data structure

2 The data structure uses only negligible O (log2 n) bits of space on top
of the input.

3 A similar result in [13] seems to be very practical, but its correctness
in the RAM model, where n tends to infinity, relies on a questionable
assumption that the natural density of the logarithms of the Mersenne
primes is non-zero (this is required to process these primes in constant
time with �(logn)-bit machine words).

that answers the LCE queries in O (log�) time and has
a construction algorithm working in O (n

logσ n) expected
time using the same memory, i.e., also “in-place”. Bille
et al. [1] presented a Monte Carlo version of their data
structure for read-only inputs that answers the LCE queries
in O (τ) time using O (

n log n
τ) bits of additional space and

has O (n log n
τ) construction time (within the same space),

where 1 ≤ τ ≤ n. Gawrychowski and Kociumaka [7, Th. 3.3]
described a modification of this Monte Carlo solution for
read-only inputs that has the same optimal space and
query time bounds but can be constructed in optimal O (n)

time.
Recently, several LCE data structures for compressed

strings were developed. For a more detailed discussion on
this topic, we refer the reader to [10,16] and references
therein.

2. Main result

Preliminaries. A string s of length n over an alphabet � is a
map {0, 1, . . . , n − 1} �→ �, where n is referred to as the
length of s, denoted by |s|. We write s[i] for the ith letter
of s. A string s[0]s[1] · · · s[j] is a prefix of s. For any i and j,
the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by
[i.. j].

Theorem. In the non-uniform cell-probe model the trade-off
S(n)T (n) = �(n log n) holds for any data structure that solves
the LCE problem for a read-only string of length n using S(n)

bits of space and T (n) time for queries assuming that each in-
put letter occupies a separate cell, the size of the input alphabet
is at least 28�S(n)/n� , and S(n) = �(n).

Proof. Without loss of generality, assume that T (n) ≥ 1.
Suppose, for the sake of contradiction, that S(n)T (n) /∈
�(n log n). Then, there is an infinite set N of positive
integers such that limn∈N

S(n)T (n)
n log n = 0. Hence, we obtain

limn∈N
S(n)

n log n = 0. Therefore, there is a positive function
ε(n) such that S(n) = ε(n)n log n for n ∈ N and ε(n) tends
to 0 as n → +∞.

Let us first construct a family F of inputs for the subse-
quent analysis. Define σ = 28�ε(n) log n� . The input alphabet
is [1..σ]. Note that σ ≥ 28 for n > 1 and σ = 28�S(n)/n�
for n ∈ N . Since logσ = o(log n) and, consequently, σ < n
for sufficiently large n, each letter of the alphabet fits in
one memory cell. Observe that, since S(n) = ε(n)n log n ≤
1
8 n logσ for n ∈ N , we are not able to encode the whole
string in S(n) bits and answer the LCE queries without any
access to the string.

Denote k = � 1
2 logσ n�. Since logσ = o(log n), we have

k = �(
log n
log σ) = ω(1). Therefore, k ≥ 1 for sufficiently large

n. Let s1, s2, . . . , sσ k denote all strings of length k over the
alphabet [1..σ]. The family F consists of all strings of the
form s1s2 · · · sσ k t , where t is a string of length n − kσ k

over the alphabet [1..σ]. Since σ kk ≤ √
n log n, it is easy

to verify that 1
2 n ≤ n − kσ k for n ≥ 28. Hence, we obtain

|F | ≥ σ
1
2 n = 2

1
2 n log σ for n ≥ 28. For convenience, we as-

sume hereafter that min N ≥ 28.
By the pigeonhole principle, there is a subfamily I ⊆F

such that |I| ≥ |F |/2S(n) and, for any strings s, s′ ∈ I ,

Download English Version:

https://daneshyari.com/en/article/4950837

Download Persian Version:

https://daneshyari.com/article/4950837

Daneshyari.com

https://daneshyari.com/en/article/4950837
https://daneshyari.com/article/4950837
https://daneshyari.com

