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We investigate the Constraint Satisfaction Problem (CSP) over templates with a group struc-
ture, and algorithms solving CSP that are equivariant, i.e. invariant under a natural group 
action induced by a template. Our main result is a method of proving the implication: if 
CSP over a coset template T is solvable by a local equivariant algorithm then T is 2-Helly 
(or equivalently, has a majority polymorphism). Therefore bounded width, and definability 
in fixed-point logics, coincide with 2-Helly. Even if these facts may be derived from al-
ready known results, our new proof method has two advantages. First, the proof is short, 
self-contained, and completely avoids referring to the omitting-types theorems. Second, it 
brings to light some new connections between CSP theory and descriptive complexity the-
ory, via a construction generalizing CFI graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many natural computational problems may be seen as 
instantiations of a generic framework called constraint sat-
isfaction problems (CSP). In a nutshell, a CSP is parametrized 
by a template, a finite relational structure T ; the CSP over 
T asks if a given relational structure I over the same vo-
cabulary as T admits a homomorphism to T (called a so-
lution of I). For every template T , the CSP over T (denoted 
CSP(T )) is always in NP; a famous conjecture due to Feder 
and Vardi [14] says that for every template T , the CSP(T ) 
is either solvable in P, or NP-complete.

We concentrate on coset templates where, roughly
speaking, both the carrier set and the relations have a 
group structure. The coset templates are cores and admit 
a Malcev polymorphism, and are thus in P [13,7]. A coset 
template T naturally induces a group action on (partial) 
solutions. If, roughly speaking, the induced group action 
can be extended to the state space of an algorithm solv-
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ing CSP(T ), and the algorithm execution is invariant under 
the group action, we call the algorithm equivariant. We in-
vestigate equivariant algorithms which are local, i.e. update 
only a bounded amount of data in every single step of ex-
ecution.

A widely studied family of local equivariant algorithms 
is the local consistency algorithms that compute families 
of partial solutions of bounded size conforming to a lo-
cal consistency condition. Templates T whose CSP(T ) is 
solvable by a local consistency algorithm are said to have 
bounded width. Another source of examples of local equiv-
ariant algorithms are logics (via their decision procedures); 
relevant logics for us will be fix-point extensions of first 
order logic, like LFP or IFP or IFP+C (IFP with counting 
quantifiers) [12]. We say that CSP(T ) is definable in a logic 
if some formula of the logic defines the set of all solvable 
instances of CSP(T ).

Our technical contribution is the proof of the following 
implication: if CSP(T ), for a coset template T , is solvable 
by a local equivariant algorithm then T is 2-Helly. In con-
sequence, all local equivariant algorithms that can capture 
2-Helly templates are equally expressive. The 2-Helly prop-
erty says that for every partial solution h of an instance I , 
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if h does not extend to a solution of I then the restriction 
of h to some two elements of its domain does not either. 
This is a robust property of templates with many equiv-
alent characterizations (e.g. strict width 2, or existence 
of a majority polymorphism) [14]. As a corollary we ob-
tain equivalence of the following conditions for coset tem-
plates: (i) 2-Helly; (ii) bounded width; and (iii) definability 
in fix-point extensions of first-order logic. The corollary is 
not a new result; equivalence of the first two conditions 
may be inferred e.g. from Lemma 9 in [11] (even for all 
core templates with a Malcev polymorphism), while equiv-
alence of the last two ones follows from [1] together with 
the results of [3] (cf. also [4]). All these results build on 
Tame Congruence Theory [15], and their proofs are a de-
tour through the deep omitting-type theorems, cf. [16]. 
Contrarily to this, our proof has an advantage of being 
short, elementary, and self-contained, thus offering a di-
rect insight into the problem.

Finally, our proof brings to light interesting connections 
between the CSP theory and the descriptive complexity 
theory: the crucial step of the proof is essentially based 
on a construction similar to CFI graphs, the intricate con-
struction of Cai, Fürer and Immerman [8]. CFI graphs have 
been designed to separate properties of relational struc-
tures decidable in polynomial time from IFP+C. A similar 
construction has been used later in [6] to show lack of de-
termination of Turing machines in sets with atoms [5]. The 
crucial step of our proof is actually a significant generaliza-
tion of the construction of [6].

For completeness we mention a recent paper of Barto 
[2] which announces the collapse of bounded width hierar-
chy for all templates: bounded width implies width (2, 3), 
which is however weaker than 2-Helly in general.

2. Preliminaries

2.1. Constraint satisfaction problems

A template T is a finite relational structure, i.e. consists 
of a finite carrier set T (denoted by the same symbol as a 
template) and a finite family of relations in T . Each relation 
R ⊆ T n is of a specified arity, arity(R) = n. Let T be fixed 
henceforth.

An instance I over a template T consists of a finite set 
I of elements, and a finite set of constraints. A constraint, 
written R(a1, . . . , an), is specified by a template relation R
and an n-tuple of elements of I , where arity(R) = n.

A partial function h from I to T , with {a1, . . . , an} ⊆
dom(h), satisfies a constraint R(a1, . . . , an) in I when 
R(h(a1), . . . , h(an)) holds in T . If h satisfies all constraints 
in its domain, h is a partial solution of I , and h is a solu-
tion when it is total. By the size of a partial solution h we 
mean the size of dom(h). The constraint satisfaction prob-
lem over T , denoted CSP(T ), is a decision problem that 
asks if a given instance over T has a solution.

There are many equivalent formulations of the problem. 
For instance, one can see I and T as relational structures 
over the same vocabulary, and then CSP(T ) asks if there is 
a homomorphism from I to T .

2.2. 2-Helly templates

For an instance I over some template, and k < j, 
a (k, j)-anomaly is a partial solution h of I of size j that 
does not extend to a solution, such that restriction of h
to every k-element subset of dom(h) does extend to a so-
lution. Clearly a (k, j)-anomaly is also (k′, j)-anomaly, for 
k′ < k.

Definition 2.1. A template T is 2-Helly if no instance of T
admits a (2, j)-anomaly, for j > 2.

In other words: for every partial solution h of size 
j > 2, if the restriction of h to every 2-element subset of 
its domain extends to a solution then h does extend to a 
solution too. Analogously one may define k-Helly for arbi-
trary k, which however will not be needed here.

We conveniently characterize 2-Helly templates as fol-
lows.

Lemma 2.2. A template T is 2-Helly iff no instance of T admits 
a (k, k + 1)-anomaly, for k ≥ 2.

Proof. For one direction, we observe that a (k, k + 1)-
anomaly is also a (2, k + 1)-anomaly.

For the other direction, consider an instance with some 
fixed (2, j)-anomaly h, for j > 2. For every subset X ⊆
dom(h), the restriction h|X either extends to a solution 
of I , or not. Consider the minimal subset X wrt. inclusion 
such that h|X does not extend to a solution of I . For all 
strict subsets X ′ ⊆ X , f |X ′ extends to a solution, hence f |X

is a (k − 1, k)-anomaly, where k is the size of X . Note that 
k > 2. �
2.3. The pp-definable relations

We adopt the convention to mention explicitly the free 
variables of a formula φ(x1, . . . , xn). In the specific in-
stances I of CSP(T ) used in our proof it will be convenient 
to use pp-definable relations, i.e. relations definable by an 
existential first-order formula of the form:

φ(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+m. ψ1 ∧ . . . ∧ ψl, (1)

where every subformula ψi is an atomic proposition 
R(xi1 , . . . , xi j ), for some template relation R . The formula 
φ defines the n-ary relation in T containing the tuples

(t1, . . . , tn) ∈ T n

such that the valuation x1 	→ t1, . . . , xn 	→ tn satisfies φ. 
The pp-definable relations are closed under projection and 
intersection.

In the sequel we feel free to implicitly assume that ele-
ments of an instance are totally ordered. The implicit order 
allows us to treat (partial) solutions as tuples, and allows 
to state the following useful fact:

Fact 2.3. Let X ⊆ I be a subset of an instance. The set of par-
tial solutions with domain X that extend to a solution of I , if 
nonempty, is pp-definable.
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