
Information Processing Letters 119 (2017) 19–24

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A revised result on chasing tree patterns under schema graphs

Junhu Wang a,∗, Jeffrey Xu Yu b, Jixue Liu c, Chaoyi Pang d

a Griffith University, Australia
b The Chinese University of Hong Kong, Hong Kong, China
c The University of South Australia, Australia
d Zhejiang University (NIT), China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 May 2016
Received in revised form 18 August 2016
Accepted 16 November 2016
Available online 30 November 2016
Communicated by Jef Wijsen

Keywords:
Databases
XML
Tree pattern
DTD
Containment

We first provide an example to show that two previously published results in [2] and [4]
on tree pattern containment under schema graphs are incorrect. We then show that the 
original result in [2] holds under some special conditions on the schema graph.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

XPath plays a central role in all XML query languages. 
A major fragment of XPath can be represented as tree pat-
terns [3]. Testing tree pattern containment, i.e., whether 
the answers to a tree pattern are all answers to another 
tree pattern, is fundamental for XML query optimization. 
It is shown in [3] that, when P and Q involve only /, //
and [], P is contained in Q if and only if there is a ho-
momorphism from Q to P . Unfortunately, when a DTD is 
present, the existence of a homomorphism from Q to P
is no longer a necessary condition for P to be contained 
in Q . However, [5] shows that if the DTD is duplicate-free
and the tree patterns involve / and [] only, then testing 
whether a tree pattern P is contained in another pattern 
Q under the DTD can be reduced to testing whether P
is contained in Q under two types of constraints implied 
by the DTD. Subsequently [2] claimed this result can be 

* Corresponding author.
E-mail address: J.Wang@griffith.edu.au (J. Wang).

extended to tree patterns involving /, // and [] under an 
acyclic schema graph (which is a type of simplified DTD), 
and [4] attempted to extend the result of [2] to cyclic 
schema graphs. Unfortunately, the claims in [2] and [4]
are both incorrect, as we will show in this paper. We then 
present a special case and show that in this special case, 
the containment problem of two tree patterns can be re-
duced to the containment problem under the constraints 
identified in [2].

2. Preliminaries

For any rooted graph G , we use root(G) and node(G)

to denote the root and the node set, respectively, of G .

Schema graph and XML tree. Similarly to [2], we model 
an XML schema as a connected directed graph G (called 
a schema graph) satisfying the following conditions: 
(1) Each node is labeled with a distinct label; (2) Each 
edge is labeled with one of 1, ?, +, and ∗; (3) There is a 
unique node, called the root, such that every other node is 
reachable from this node. The set of labels occurring in G

http://dx.doi.org/10.1016/j.ipl.2016.11.005
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.11.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:J.Wang@griffith.edu.au
http://dx.doi.org/10.1016/j.ipl.2016.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.11.005&domain=pdf


20 J. Wang et al. / Information Processing Letters 119 (2017) 19–24

Fig. 1. Schema graph G , conforming XML trees t1 and t2, and tree patterns 
P and Q satisfiable under G .

is denoted �G . Because a node in a schema graph G has a 
unique label, we also refer to a node by its label. A schema 
graph may be cyclic or acyclic. An example acyclic schema 
graph is shown in Fig. 1 (a).

As in previous work [1,3,2] we model an XML docu-
ment as a finite unordered tree (referred to as an XML 
tree) where every node has a label. Let v be a node in 
an XML tree t . The label of v is denoted label(v). An XML 
tree t is said to conform to schema graph G if (1) for ev-
ery node v ∈ node(t), label(v) ∈ �G ; (2) label(root(t)) =
label(root(G)); (3) for every edge (u, v) in t , there is a 
corresponding edge (label(u), label(v)) in G; and (4) for ev-
ery node v ∈ node(t), the number of children of v labeled 
with x is constrained by the label of the edge (label(v), x)
in G: there must be exactly one, zero or one, one or many, 
or zero or many children of v labeled with x if the la-
bel of the edge (label(v), x) is 1, ?, +, or ∗ respectively. 
Fig. 1 (b) and (c) show two XML trees conforming to the 
schema graph G in Fig. 1 (a). The set of all XML trees con-
forming to G is denoted T G .

Tree patterns. We consider the class of Boolean tree pat-
terns (or simply tree patterns or patterns) P {/,//,[]} as de-
fined in [3]. Each pattern in P {/,//,[]} is a node-labeled tree 
with two types of edges: /-edges and //-edges. It corre-
sponds to an XPath expression involving the child-axis (/), 
descendant-axis (//), and branch condition ([]). Fig. 1 (d) 
and (e) show two tree patterns. Here, single and double 
lines represent /-edges and //-edges respectively. A branch 
in the tree represents a condition ([]) in the XPath expres-
sion.

Given a pattern P and an XML tree t , P (t) returns true
if and only if there is an embedding of P in t . An embed-
ding of a tree pattern P in an XML tree t is a mapping 
δ from node(P ) to node(t) with the following condi-
tions: (1) label-preserving, i.e., ∀v ∈ node(P ), label(v) =
label(δ(v)); (2) root-preserving, i.e., δ(root(P )) = root(t);
and (3) structure-preserving, i.e., for every edge (x, y) in P , 
if it is a /-edge, then δ(y) is a child of δ(x); if it is a 
//-edge, then δ(y) is a descendant of δ(x), i.e., there is a 
path from δ(x) to δ(y) of length greater than 0.

A tree pattern P is said to be satisfiable under schema 
graph G if there exists t ∈ T G such that P (t) is true. The 
tree patterns shown in Fig. 1 (d) and (e) are satisfiable un-
der the schema graph G in Fig. 1 (a). In this paper we 
implicitly assume all tree patterns are satisfiable under the 
schema graphs being discussed.

Tree pattern containment. Given two patterns P and Q , 
P is said to be contained in Q (under G), denoted P ⊆ Q
(P ⊆G Q ) if for every XML tree t (∈ T G ), P (t) ⇒ Q (t). 
P and Q are said to be equivalent (under G) if P ⊆ Q and 
Q ⊆ P (P ⊆G Q and Q ⊆G P ). It is well known that for 
any P , Q ∈P{/,//,[]} , P ⊆ Q if and only if there is a homo-
morphism from Q to P [1]. A homomorphism [3] from 
Q to P is a mapping δ from node(Q ) to node(P ) that 
is label-preserving, root-preserving as defined in the defi-
nition of embedding, and structure-preserving which now 
means that, for every edge (x, y) in Q , if it is a /-edge, 
then (δ(x), δ(y)) is a /-edge in P ; and if it is a //-edge, 
then there is a path from δ(x) to δ(y) of length > 0.

In the following, we will use G-path to refer to a path 
in G; /-child (resp. //-child) to refer to a child connected to 
the parent via a /-edge (resp. //-edge); (/, x)-child to refer 
to a /-child labeled x, and x//y-edge to refer to a //-edge 
from an x-node to a y-node.

3. The incorrect results in previous work

It is claimed in Theorem 4 of [2] that, if P and Q are 
both in P{/,//,[]} and the schema graph G is acyclic, then 
whether P is contained in Q under G can be reduced to 
tree pattern containment under the following five types of 
constraints1 (referred to as the LWZ constraints in this pa-
per) implied by G (a schema graph G is said to imply a 
constraint C , denoted G � C , if every XML tree conforming 
to G satisfies C ).

(1) Parent-Child Constraints (PC), denoted a ⇓1 x, which 
means that whenever an x-node is the descendant of 
an a-node, it must be the child of the a-node.

(2) Sibling Constraints (SC), denoted a :↓ y. The constraint 
means that every a-node must have a y-child.2

(3) Cousin Constraints (CC), denoted a : x ⇓ y. The con-
straint means that for every a-node, if it has an 
x-descendant, then it also has a y-descendant.

(4) Intermediate Node Constraints (IC), denoted a x−→ y, 
which means that every path from an a-node to a 
y-node must pass through an x-node.

(5) Functional Constraints (FC), denoted a � x, which 
means that every a-node has at most one x-child.

1 The SC and FC were originally defined in [5].
2 The original SC constraint in [5] is of the form a : S ↓ y where S is a 

set of labels, which means that if an a-node has a z-child for every z ∈ S , 
then it must also have a y-child. The SC constraint in [2] is a special case 
where S may contain at most 1 label. We note the schema graph in [2]
allows a node to represent a sequence of labels. If there are no sequence 
types in the schema graph, then any SC must be of the form a : ∅ ↓ y
(called child constraints in [5]), which is abbreviated as a :↓ y in this paper.



Download English Version:

https://daneshyari.com/en/article/4950947

Download Persian Version:

https://daneshyari.com/article/4950947

Daneshyari.com

https://daneshyari.com/en/article/4950947
https://daneshyari.com/article/4950947
https://daneshyari.com

