
Journal of Computational Science 20 (2017) 8–16

Contents lists available at ScienceDirect

Journal  of  Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Generating  optimal  paths  in  dynamic  environments  using  River
Formation  Dynamics  algorithm

Grzegorz  Redlarski,  Mariusz  Dabkowski,  Aleksander  Palkowski ∗

Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 23 March 2016
Received in revised form 17 January 2017
Accepted 1 March 2017
Available online 4 March 2017

Keywords:
Dynamic environment
Heuristic algorithm
Path planning
River Formation Dynamics
Swarm intelligence

a  b  s  t  r  a  c  t

The  paper  presents  a comparison  of  four  optimisation  algorithms  implemented  for the  purpose  of  finding
the  shortest  path  in  static  and  dynamic  environments  with  obstacles.  Two  classical  graph  algorithms  –
the  Dijkstra  complete  algorithm  and A*  heuristic  algorithm  – were  compared  with  metaheuristic  River
Formation  Dynamics  swarm  algorithm  and  its  newly  introduced  modified  version.  Moreover,  another
swarm algorithm  has  been  compared  –  the  Ant  Colony  Optimization  and  its modification.  Terms  and
conditions  of the simulation  are  thoroughly  explained,  paying  special  attention  to the  new,  modified  River
Formation  Dynamics  algorithm.  The  algorithms  were  used  for the purpose  of  generating  the  shortest
path  in  three  different  types  of  environments,  each  served  as a  static  environment  and  as  a dynamic
environment  with  changing  goal  or  changing  obstacles.  The  results  show  that the  proposed  modified  River
Formation  Dynamics  algorithm  is  efficient  in  finding  the shortest  path,  especially  when  compared  to its
original  version.  In cases  where  the  path  should  be  adjusted  to changes  in the  environment,  calculations
carried  out  by  the  proposed  algorithm  are  faster  than  the A*, Dijkstra,  and  Ant  Colony  Optimization
algorithms.  This  advantage  is  even  more  evident  the  more  complex  and  extensive  the  environment  is.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Path planning relates to the problem of calculating a continu-
ous or discrete path in a known or unknown environment in such
a way, that the path will not violate any established constraints. An
object guided along the path should achieve its goal while avoid-
ing collision with any encountered obstacles. This process is most
frequently implemented with an additional path length optimisa-
tion. However, energy consumption, time of travel or other physical
factors are often subjected to an optimisation process as well.

Most often this issue is encountered in navigation systems for
autonomous vehicles where safe and efficient passage is crucial and
its efficiency is measured by path length (the shortest possible) and
calculation time (also taking into account time to adapt to changes
during the passage). As nearly all real-world applications are sub-
ject to, often very frequent, changes, the ability to rapidly correct
itself according to the given changes plays a crucial role in all path
planning systems.

∗ Corresponding author.
E-mail addresses: grzegorz.redlarski@pg.gda.pl (G. Redlarski),

mariusz.dabkowski@pg.gda.pl (M.  Dabkowski), aleksander.palkowski@pg.gda.pl
(A. Palkowski).

The issue of computing an efficient path was  repeatedly dis-
cussed in various contexts [1,2]. Current solutions are based on
two major principles: on classical, iterative methods, such as the
Dijkstra’s algorithm [3], and on heuristic methods [4,5]. The clas-
sical approach is computationally simple, however offers limited
possibilities for more complex cases. Methods based on heuristic
algorithms provide more flexibility for coping with multi-objective,
complicated problems. In addition, heuristics are well suited for
solving NP-complete problems, which are the case in path finding
tasks, especially with time, velocity, and acceleration restrictions
among polyhedral obstacles [6,7].

Today the issue of moving in a known environment based on
a complete map  does not pose a major research problem. On the
other hand navigation in an area partially or completely unknown
or with dynamically moving obstacles and/or goals is still a prob-
lem not fully explored. This is particularly evident if one takes into
account the latest artificial intelligence methods, such as swarm
algorithms, to generate collision-free trajectories under uncer-
tainty while dealing with possible terrain variations.

Employment of heuristic methods, e.g., the D*  algorithm [8,9],
provides good results, however some of the methods suffer from
high computation times (which eliminates their use for rapidly
changing conditions), or from lack of adjustment to measurement
uncertainty. Research on the D* algorithm for path planning in
unknown, partially known, and completely known environment

http://dx.doi.org/10.1016/j.jocs.2017.03.002
1877-7503/© 2017 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2017.03.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2017.03.002&domain=pdf
mailto:grzegorz.redlarski@pg.gda.pl
mailto:mariusz.dabkowski@pg.gda.pl
mailto:aleksander.palkowski@pg.gda.pl
dx.doi.org/10.1016/j.jocs.2017.03.002


G. Redlarski et al. / Journal of Computational Science 20 (2017) 8–16 9

shows that even with very limited knowledge about the envi-
ronment (approx. 1/64 of the whole map) the costs of passage
were maintained only at a slightly higher level than for a com-
pletely known environment [8]. By further modifications of the
D* algorithm, a 96% computation time reduction was achieved [9].
Another heuristic method – the A* algorithm – was  used to generate
collision-free trajectories in real-time for dynamic unknown envi-
ronments [10]. By generating intermediate targets that depend on
execution time and current values of sensory signals, the algorithm
was able to generate collision-free paths in real time, even in large-
scale, dynamic, unknown environments. However, the algorithm
could not cope with re-planning of (upgrading) the paths.

So far, swarm algorithms were successfully used to solve the
problem of static programming, i.e. when the map  is known [11,12].
A comparison between Dijkstra’s algorithm, modified Dijkstra’s
algorithm, and a combined Dijkstra’s and Particle Swarm Optimiza-
tion (PSO) algorithm was made for generating collision-free paths
for a fixed, unchanging environment [11]. It was proved that the
PSO algorithm poses higher potential for generating shorter motion
paths than the other presented methods. Zhang et al. [12] pro-
posed a two-stage optimisation algorithm for path selection risk
and length of the path. The PSO algorithm was used to optimise both
functions and the results showed acceptable and safe motion paths
for four three-dimensional environments affected by uncertainty,
with static obstacles varying in number, location, and shape.

There is a limited number of studies on the use of other nature-
inspired algorithms, like Genetic Algorithms [13,14] or Simulated
Annealing algorithm [15], as an effective tool for dynamic path
optimisation. In complex environments, Genetic Algorithms con-
sume a lot of time to generate collision-free trajectories, which
limits their practical use. It was shown that for an environment
with fourteen static and five dynamic obstacles, a system based on
Genetic Algorithms needed about 10 s to find the first valid path
[13]. Better results were observed in the case of the Simulated
Annealing algorithm, where its enhanced version demonstrated a
significant advantage over compared algorithms in speed of gen-
erating a collision-free trajectory in complex environments [15].
Another nature-inspired algorithm – Random Particle Path Opti-
mization – was compared with a classical path planning method –
Artificial Potential Field [16]. It was concluded that the proposed
algorithm can generate shorter paths even in an environment with
moving obstacles and varying goals.

As mentioned above, the issue of effective motion planning
under dynamic conditions (i.e. with variable terrain and objectives)
remains a matter that needs to be addressed. Nature-inspired algo-
rithms, with swarm algorithms in particular, are means to solve
even most complicated problems with varying conditions, while
still being effectively fast and robust. Due to increasing number
of new swarm algorithms it is crucial to examine their potential-
ity to solve the given problem, as most of the literature focuses
on implementing the Particle Swarm Optimization or Ant Colony
Optimization algorithms.

One of the latest methods in this field of computation is the
River Formation Dynamics (RFD) algorithm [17]. It is based on an
idea to imitate the process of riverbed formation, and as an opti-
misation algorithm it surpasses even the Ant Colony Optimization
[18,19]. Moreover, there are indications that this algorithm is effi-
cient in robot motion planning [20], however its features have not
been thoroughly researched. Bearing in mind those facts, a ques-
tion is raised whether the RFD algorithm can be used to effectively
generate optimal paths in dynamically changing conditions, espe-
cially when compared to more established methods. Therefore this
article aims at presenting the RFD algorithm in the task of dynamic
motion planning, as well as introduces all necessary improvements
to the algorithm’s core. To measure its effectiveness, the original
and modified versions of the RFD algorithm are compared with the

Ant Colony Optimization algorithm together with its modified ver-
sion and two classical Dijkstra’s [21] and A* [22] algorithms by their
optimised path length and computation time.

2. Methods

2.1. River Formation Dynamics algorithm

The principle of the RFD algorithm is to imitate the process of
formation of riverbeds. A set of drops placed at the starting point is
subjected to gravitational forces that attract the drops to the cen-
tre of the earth. As a result, these drops are distributed throughout
their environment, seeking the lowest point – the sea. Many new
riverbeds are formed in this process. The RFD utilises this idea in
graph theory problems. A set of agents-drops are created and move
on edges between nodes, exploring an environment for the best
solution. This is accomplished by mechanisms of erosion and soil
sedimentation that relate to changes in altitude that is assigned to
each node. Drops, when moving throughout an environment, mod-
ify node altitudes along their path. The transition from one node to
another is carried out according to decreasing altitude of the nodes,
which in fact provides many benefits (e.g., avoidance of local cycles)
[17]. The RFD algorithm in this manner is a gradient-oriented vari-
ant of the Ant Colony Optimization algorithm. The authors of the
original algorithm, however, proposed several changes to further
increase the algorithm’s efficiency. One of those changes is a rather
rare chance of an agent to go against an increasing elevation, which
is introduced to the system presented in the paper.

A brief description of the RFD algorithm is as follows. An amount
of soil is assigned to each node. Drops, as they move, erode their
paths (taking some soil from nodes) or deposit the carried sediment
(thus increasing the altitudes of nodes). Probability of choosing the
next node depends on the gradient, which is proportional to the
difference between height of the node at which the drop resides
and height of its neighbour. In the beginning the environment is
flat, i.e. altitudes of all nodes are equal, except the goal node which
is equal to zero during the entire process. Drops are placed in the
initial node to enable further exploration of the environment. At
each step a group of drops sequentially traverses the space, and
then performs erosion on visited nodes. Algorithm 1 presents the
RFD algorithm in a form of a pseudo-code.

Algorithm 1. River Formation Dynamics algorithm

1: Height of nodes ← initial height
2:  Height of target node ← 0
3: while end conditions are not met  do
4: Place all drops in starting node
5: Move all drops across the graph for a maximum number of steps
6:  Analyse complete paths
7: Height of nodes on paths −= erosion based on path costs
8:  Height of all nodes += small amount of sediment
9:  end while

Drops move one at a time (line 5), until they reach the goal or
have traversed the maximum prescribed number of nodes. This
maximum number of node is chosen as the total number of nodes
in an environment. The probability Pk(i, j) that a drop k residing in
node i would select the next node j is as follows:

Pk(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gradient(i, j)
total

for j ∈ Vk(i)

ω/|gradient(i, j)|
total

for j ∈ Uk(i)

ı

total
for j ∈ Fk(i)

(1)



Download English Version:

https://daneshyari.com/en/article/4951021

Download Persian Version:

https://daneshyari.com/article/4951021

Daneshyari.com

https://daneshyari.com/en/article/4951021
https://daneshyari.com/article/4951021
https://daneshyari.com

