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a  b  s  t  r  a  c  t

This  study  is  to understand  confinement  effect  on  the  dynamical  behaviour  of a droplet  immersed  in an
immiscible  liquid  subjected  to a  simple  shear  flow.  The  lattice  Boltzmann  method,  which  uses  a  forcing
term  and  a recolouring  algorithm  to realize  the  interfacial  tension  effect  and  phase  separation  respec-
tively,  is  adopted  to systematically  study  droplet  deformation  and  breakup  in confined  conditions.  The
effects of capillary  number,  viscosity  ratio  of  the droplet  to  the  carrier  liquid,  and  confinement  ratio
are  studied.  The  simulation  results  are  compared  against  the  theoretical  predictions,  experimental  and
numerical  data  available  in  literature.  We  find  that  increasing  confinement  ratio  will enhance  deforma-
tion,  and  the  maximum  deformation  occurs  at the  viscosity  ratio  of  unity.  The droplet  is found  to  orient
more  towards  the  flow  direction  with  increasing  viscosity  ratio  or confinement  ratio.  Also,  it  is  noticed
that  the  wall  effect  becomes  more  significant  for the confinement  ratios  larger  than  0.4.  Finally,  the  crit-
ical capillary  number,  above  which  the  droplet  breakup  occurs,  is  found  to be  mildly  affected  by  the
confinement  for the  viscosity  ratio of unity.  Upon  increasing  the  confinement  ratio,  the critical  capillary
number  increases  for the  viscosity  ratios  less  than  unity,  but decreases  for the  viscosity  ratios  more  than
unity.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Emulsions consist of immiscible fluids commonly found in pro-
duction processes in food, chemical, and pharmaceutical industries.
Since the droplet size and shape determine important emulsion
properties such as stability, rheology, and particle morphology, it
is important to understand the mechanism of droplet deforma-
tion and breakup during emulsification. In addition, the study of
droplet deformation and breakup can provide valuable insights
into immiscible fluid displacement in porous media, which plays
an important role in enhanced oil recovery, geologic CO2 seques-
tration, and remediation of nonaqueous-phase liquids. In recent
years, the droplet deformation and breakup have received more
attention because of the growing interest in microfluidic technolo-
gies, where droplets are circulated in channels and their size is often
comparable with or even smaller than channel dimension. A signif-
icant number of theoretical, experimental and numerical studies
have been reported regarding droplet deformation and breakup in
a shear flow since the pioneering work of Taylor [1]. The main fea-
ture of shear flow is its relative simplicity, while it contains rich
physics [2].
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As sketched in Fig. 1, a spherical droplet with radius R is initially
placed halfway between two parallel plates that are separated by
a distance H. Shear flow is introduced to this system by the move-
ment of the plates with equal but opposite velocities U, and the
resulting shear rate is �̇ = 2U/H. The droplet and the carrier fluid
are assumed to have equal densities �, a constant interfacial ten-
sion �, and their dynamic viscosities are �d and �m. In the simple
shear flow, two most important forces exerting on the droplet are:
the viscous forces (�m�̇R2), leading the droplet to deform and turn
towards the flow direction, and the capillary forces (�R), resisting
the droplet deformation and retaining the spherical shape of the
droplet. Consequently, the droplet undergoes an elongation in the
direction of the L-axis, and a compression in the direction of the
B-axis (see the right panel of Fig. 1). The capillary number, which
is defined as Ca = �̇R�m/�,  is used to measure the relative mag-
nitude of viscous and capillary forces. The inertial force can also
influence the dynamical behaviour of the droplet, and its impor-
tance is described by the Reynolds number, defined as the ratio of
inertial to viscous forces i.e. Re = � �̇R2/�m. In addition to the capil-
lary and Reynolds numbers, the viscosity ratio (� = �d/�m) and the
proximity of droplet to the walls are found to affect strongly the
deformation and breakup of the droplet. The proximity is evaluated
by the confinement ratio, defined as 2R/H. Under consideration of
low capillary number and confinement ratio, the droplet will even-
tually become ellipsoidal in the Stokes flow regime (Re < 1). The
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Fig. 1. Schematic illustration of droplet deformation in a simple shear flow.

deformation parameter D can be defined by the lengths of the major
(L) and minor (B) axes of the deformed droplet, i.e.

D = L  − B

L + B
. (1)

With increasing Ca,  the droplet can reach a steady state but devi-
ate from the ellipsoidal shape. This causes difficulty in obtaining the
correct values of deformation parameter and orientation angle (�),
which is defined as the angle between the droplet major axis and
the horizontal plane. As the capillary number is further increased
above the critical value, the capillary forces can no longer retain
the shape of droplet; the dominant viscous forces lead the droplet
to form a long thin neck and finally break up into two or more
fragments. The critical capillary number (Cacr), above which the
droplet breakup will occur, is influenced by both the viscosity and
confinement ratios [3].

The interest in droplet deformation dates back to the work of
Taylor (1934) [1], who derived a theoretical expression to describe
small deformations in the bulk shear flow in terms of the viscosity
ratio and the capillary number:

DT = 19�  + 16
16� + 16

Ca. (2)

This expression has been demonstrated to predict experimental
results well in a variety of cases, where the value of confinement
ratio was around 0.2. However, the influence of wall confine-
ment is not taken into account in Eq. (2). It was reported that
the presence of walls has a negligible contribution to the droplet
deformation for the confinement ratio 2R/H ≤ 0.4 [4,5]. When the
confinement ratio is higher than 0.4, the deformation cannot be
predicted accurately by Eq. (2). Moreover, Eq. (2) is not able to
describe the droplet deformation for very large viscosity ratios
[1,6]. More discussion about this equation can be found in these
review papers [7–10]. Taylor derived his model using small defor-
mation perturbation procedure to the first order, with Ca as the
expansion parameter, so he obtained a constant orientation angle
of 45◦. The perturbation procedure was later to be extended to
the second order in Ca to yield an expression for the orientation
angle [11–14]: � = (�/4) − ((16 + 19�)(3 + 2�)/80(1 + �))Ca [15]. The
orientation angle was also formulated differently in the phenomen-
ological models of Maffetone and Minale [16] and Minale [17].

To address the wall confinement effect on droplet behaviour,
Shapira and Haber [18] solved the Stokes flows around a droplet
using the method of reflection, which takes into account the relative

position of the droplet to the wall. The resulting SH model combines
the Taylor deformation and an additional term accounting for the
influence of walls on the deformation:

DSH = DT

[
1 + CS

1 + 2.5�
1 + �

(
R

H

)3
]
, (3)

where CS is referred to as a shape parameter and its value depends
on the relative position of the droplet to the walls. For a droplet
positioned halfway between the two walls CS is taken as 5.6996.

To predict the droplet deformation under transient conditions,
Maffettone and Minale [16] proposed a phenomenological model,
i.e. MM model, in which the droplet shape is assumed to remain
ellipsoidal. A second order tensor S, whose eigenvalues reflect the
squares of the semi-axes of an ellipsoid, is used to describe the
droplet shape. Based on this assumption, they derived an evolution
equation for the tensor S, which consists of a co-rotational deriva-
tive, the contributions of the viscous stress and the capillary force.
The values of the semi-axes for several typical flows were predicted,
including the simple shear flow, the uniaxial extensional flow and
the planar hyperbolic flow. In particular, for the simple shear flow,
the deformation parameter in a steady state is calculated as

DMM =

√
m2

1 + Ca2 −
√
m2

1 + (1 − m2
2)Ca2

m2Ca
,  (4)

where

m1 = 40(� + 1)
(2� + 3)(19� + 16)

, (5)

and

m2 = 5
2� + 3

+ 3Ca2

2 + 6Ca2
. (6)

The droplet deformation was also investigated experimentally
by Sibillo et al. [19] for the viscosity ratio of unity. Three different
capillary numbers, i.e. 0.1, 0.2, and 0.3, were studied for the confine-
ment ratios ranging from 0.14 to 1.0. For the same capillary number,
the droplet could obtain a more elongated shape for larger confine-
ment ratios. Also, the droplet shape deviates from ellipsoid at very
high confinement ratios, i.e., 2R/H ≥ 0.8. A similar study, for a range
of viscosity ratios, was performed by Vananroye et al. [6]. The dif-
ference in the droplet deformation is not significant for different
viscosity ratios at low confinement ratios. However, this differ-
ence grows considerably at large confinement ratios, and is more
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