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We prove that graph problems with finite integer index have linear kernels on graphs of 
bounded expansion when parameterized by the size of a modulator to constant-treedepth 
graphs. For nowhere dense graph classes, our result yields almost-linear kernels. We also 
argue that such a linear kernelization result with a weaker parameter would fail to include 
some of the problems covered by our framework. We only require the problems to have FII 
on graphs of constant treedepth. This allows to prove linear kernels also for problems such 
as Longest-Path/Cycle, Exact-s, t-Path, Treewidth, and Pathwidth, which do not have FII on 
general graphs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Data preprocessing has always been a part of algorithm design. The last decade has seen steady progress in the area 
of kernelization, an area which deals with the design of polynomial-time preprocessing algorithms. These algorithms com-
press an input instance of a parameterized problem into an equivalent output instance whose size is bounded by some 
function of the parameter. Parameterized complexity theory guarantees the existence of such kernels for problems that are 
fixed-parameter tractable. Some problems admit stronger kernelization in the sense that the size of the output instance is 
bounded by a polynomial (or even linear) function of the parameter, the so-called polynomial (or linear) kernels.

Of great interest are algorithmic meta-theorems, results that focus on problem classes instead of single problems. In the 
area of graph algorithms, such meta-theorems usually have the following form: all problems with a specific property admit, 
on a specific graph class, an algorithm of a specific type. We are specifically interested in meta-theorems that concern 
kernelization, for which a solid groundwork already exists. Before we delve into the history, we need to quickly establish 
the keystone property that drives all these meta-theorems: the notion of finite integer index (FII).
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Roughly speaking, a graph problem has FII if there exists a finite set S of graphs such that every instance of the problem 
can be represented by a member of S alongside an integer “offset”. This property is the basis of the protrusion replacement 
rule whereby protrusions (pieces of the input graph satisfying certain requirements) are replaced by members of the set S . 
Finite integer index is an intrinsic property of the problem itself and is not directly related to whether it can be expressed 
in a certain logic. In particular, expressibility in the monadic second-order logic of graphs with vertices and edges (MSO2
and its extension to optimization problems abbreviated as EMSO2) does not imply FII (see [1] for sufficiency conditions for a 
problem expressible in counting MSO to have FII). As an example of this phenomenon, Hamiltonian Path has FII on general 
graphs whereas Longest Path does not, although both are EMSO2-expressible.

Now, the first steps toward a kernelization meta-theorem appeared in a paper by Guo and Niedermeier who provided 
a prescription of how to design linear kernels on planar graphs for graph problems which satisfy a certain distance prop-
erty [2]. Their work built on the seminal paper by Alber, Fellows, and Niedermeier who showed that Dominating Set has a 
linear kernel on planar graphs [3]. This was followed by the first true meta-theorem in this area by Bodlaender et al. [1] who 
showed that graph problems that have FII and satisfy a property called quasi-coverable1 admit linear kernels on bounded 
genus graphs. Shortly after [1] was published, Fomin et al. [4] proved a meta-theorem for linear kernels on H-minor-free 
graphs, a graph class that strictly contains graphs of bounded genus. A rough statement of their main result states that any 
graph problem that has FII, is contraction bidimensional, and satisfies a separation property has a linear kernel on graphs ex-
cluding a fixed graph as minor. This result was, in turn, generalized in [5] to H-topological-minor-free graphs, which strictly 
contain H-minor-free graphs. Here, the problems are required to have FII and to be treewidth-bounding: A graph problem 
is treewidth-bounding if yes-instances have a vertex set of size linear in the parameter, the deletion of which results in a 
graph of bounded treewidth. Such a vertex set is called a modulator to bounded treewidth. Prototypical problems that satisfy 
this condition are Feedback Vertex Set and Treewidth t-Vertex Deletion,2 when parameterized by the solution size.

We see that while these meta-theorems (viewed in chronological order) steadily covered larger graph classes, the set of 
problems captured in their framework diminished as the other precondition(s) became stricter. Surprisingly, this is not due 
to said preconditions: It turns out that they can be expressed in a unified manner and are therefore equally restrictive. The 
combined properties of bidimensionality and separability (used to prove the result on H-minor-free graphs) imply that the 
problem is treewidth-bounding (cf. Lemma 3.2 and 3.3 in [4]). Quasi-coverability on bounded genus graphs implies the same 
(cf. Lemma 6.4 in [1]). This demonstrates that all three previous meta-theorems on linear kernels implicitly or explicitly used 
treewidth-boundedness. Hence the diminishing set of problems can be blamed on the increasingly weaker interaction of the 
graph classes with the problem parameters, not the (only apparently) stricter precondition on the problems.

This insight motivates a different view on previous meta-theorems: problems that have FII admit linear kernels if pa-
rameterized by a treewidth modulator in classes excluding a topological minor. In small enough classes (bounded genus, 
apex-minor-free) the natural parameterization of problems satisfying some basic properties (quasi-coverable, contraction-
bidimensionality) coincides with the parameterization by a treewidth-modulator. This change in perspective replaces the 
natural parameter—whose structural impact diminishes in larger sparse graph classes—by an explicit structural parameter 
which retains the crucial interaction between parameter and graph class. It also gives us, as we will see, the freedom to 
adapt the parameterization to our needs.

The next well-established level in the sparse-graph hierarchy [6] is formed by the classes of bounded expansion. The 
notion was introduced by Nešetřil and Ossona de Mendez [7] and subsumes graph classes excluding a fixed graph as a 
topological minor. It turns out that for these classes the serviceable parameterization by a treewidth modulator cannot work 
if we aim for linear kernels: Any graph class G can be transformed into a class G̃ of bounded expansion by replacing every 
graph G ∈ G with G̃ , obtained in turn by replacing each edge of G by a path on |V (G)| vertices. For problems like Treewidth 
t-Vertex Deletion and, in particular, Feedback Vertex Set this operation neither changes the instance membership nor 
does it increase the parameter. As both the problems do not admit kernels of size O (k2−ε) unless coNP ⊆ NP/poly, by 
a result of Dell and Melkebeek [8], a linear kernelization result on bounded-expansion classes of graphs and under the 
treewidth-modulator parameterization would have to exclude both these natural problems.

In this work, we identify a structural parameter that indeed does allow linear kernels for all problems that have FII on 
graph classes of bounded expansion—the size of a treedepth modulator. This parameter not only increases under replacing 
edges with paths (a necessary prerequisite as we now know), but it also provides exactly the structure that seems necessary 
to obtain such a result. To put this parameterization into context, let us recap some previous work on structural parameters. 
Even outside the realm of sparse graphs, they have been used to zero in on those aspects of problems that make them 
intractable—a development that certainly fits the overall agenda of parameterized complexity. This research of alternative 
parameterizations has given rise to what is called the parameterized ecology [9].

Already the perhaps strongest structural parameter for graph-related problems—the vertex cover number—makes up an 
interesting niche of said ecology, as we summarize now. Many problems that are W-hard or otherwise difficult to param-
eterize such as Longest Path [10], Cutwidth [11], Bandwidth, Imbalance, Distortion [12], List Coloring, Precoloring 
Extension, Equitable Coloring, L(p, 1)-Labeling, and Channel Assignment [13] are (easily) fixed-parameter tractable (fpt) 
when parameterized by the vertex cover number. Some generalizations of vertex cover have also been successfully used as 

1 This property was called quasi-compactness in earlier version of [1].
2 For problem definitions, see Appendix.
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