
J. Parallel Distrib. Comput. 111 (2018) 162–173

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Delta state replicated data types✩

Paulo Sérgio Almeida 1, Ali Shoker *,1, Carlos Baquero 1

Departamento de Informática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

h i g h l i g h t s

• Definition of delta-state CRDTs and their relation to state CRDTs.
• Proofs of conditions to attain equivalence to state based CRDTs.
• Anti-entropy algorithm for basic and causally consistent convergence.
• Portfolio of delta state CRDTs including optimized sets, and recursive map.

a r t i c l e i n f o

Article history:
Received 19 April 2016
Received in revised form 13 June 2017
Accepted 13 August 2017
Available online 18 August 2017

Keywords:
Distributed systems
Eventual consistency
State-based
Delta
Conflict-free replicated data types
CRDT

a b s t r a c t

Conflict-free Replicated Data Types (CRDTs) are distributed data types that make eventual consistency of
a distributed object possible and non ad-hoc. Specifically, state-based CRDTs ensure convergence through
disseminating the entire state, thatmay be large, andmerging it to other replicas.We introduceDelta State
Conflict-Free Replicated Data Types (δ-CRDT) that can achieve the best of both operation-based and state-
based CRDTs: small messages with an incremental nature, as in operation-based CRDTs, disseminated
over unreliable communication channels, as in traditional state-based CRDTs. This is achieved by defining
δ-mutators to return a delta-state, typically with a much smaller size than the full state, that to be
joined with both local and remote states. We introduce the δ-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs. In addition, we present an anti-
entropy algorithm for eventual convergence, and another one that ensures causal consistency. Finally, we
introduce several δ-CRDT specifications of both well-known replicated datatypes and novel datatypes,
including a generic map composition.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Eventual consistency (EC) is a relaxed consistency model that
is often adopted by large-scale distributed systems [15,18,34]
where availability must be maintained, despite outages and par-
titioning, whereas delayed consistency is acceptable. A typical
approach in EC systems is to allow replicas of a distributed object
to temporarily diverge, provided that they can eventually be rec-
onciled into a common state. To avoid application-specific recon-
ciliation methods, costly and error-prone, Conflict-Free Replicated
Data Types (CRDTs) [32,33]were introduced, allowing the design of
self-contained distributed data types that are always available and

✩ The work presented was partially supported by EU FP7 SyncFree project
(609551), EU H2020 LightKone project (732505), and SMILES line in project
TEC4Growth (NORTE-01-0145-FEDER-000020).

* Corresponding author.
E-mail addresses: psa@di.uminho.pt (P.S. Almeida), shokerali@di.uminho.pt

(A. Shoker), cbm@di.uminho.pt (C. Baquero).
1 HASLab/INESC TEC and Universidade do Minho, Portugal.

eventually converge when all operations are reflected at all repli-
cas. Though CRDTs are deployed in practice and supportmillions of
users worldwide [9,21,30], more work is still required to improve
their design and performance.

CRDTs support two complementary designs: operation-based
(or op-based) and state-based. In op-based designs [26,33], the
execution of an operation is done in two phases: prepare and effect.
The former is performed only on the local replica and looks at the
operation and current state to produce a message that aims to
represent the operation, which is then shipped to all replicas. Once
received, the representation of the operation is applied remotely
using effect. On the other hand, in a state-based design [5,33] an
operation is only executed on the local replica state. A replica
periodically propagates its local changes to other replicas through
shipping its entire state. A received state is incorporated with the
local state via a merge function that deterministically reconciles
both states. To maintain convergence, merge is defined as a join:
a least upper bound over a join-semilattice [5,33].

Op-based CRDTs have some advantages as they can allow for
simpler implementations, concise replica state, and smaller mes-
sages; however, they are subject to some limitations: First, they

http://dx.doi.org/10.1016/j.jpdc.2017.08.003
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.08.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.08.003&domain=pdf
mailto:psa@di.uminho.pt
mailto:shokerali@di.uminho.pt
mailto:cbm@di.uminho.pt
http://dx.doi.org/10.1016/j.jpdc.2017.08.003

P.S. Almeida et al. / J. Parallel Distrib. Comput. 111 (2018) 162–173 163

assume a message dissemination layer that guarantees reliable
exactly-once causal broadcast; these guarantees are hard to main-
tain since large logsmust be retained to prevent duplication even if
TCP is used [20]. Second,membershipmanagement is a hard task in
op-based systems especially once the number of nodes gets larger
or due to churn problems, since all nodes must be coordinated by
the middleware. Third, the op-based approach requires operations
to be executed individually (even when batched) on all nodes.

The alternative is to use state-based systems, which are free
from these limitations. However, a major drawback in current
state-based CRDTs is the communication overhead of shipping the
entire state, which can get very large in size. For instance, the
state size of a counter CRDT (a vector of integer counters, one
per replica) increases with the number of replicas; whereas in a
grow-only Set, the state size depends on the set size, that grows as
more operations are invoked. This communication overhead limits
the use of state-based CRDTs to data-types with small state size
(e.g., counters are reasonable while large sets are not). Recently,
there has been a demand for CRDTs with large state sizes (e.g., in
RIAK DT Maps [10] that can compose multiple CRDTs and that we
formalize in Section 7.4.9).

In this paper, we rethink the way state-based CRDTs should be
designed, having in mind the problematic shipping of the entire
state. Our aim is to ship a representation of the effect of recent
update operations on the state, rather than the whole state, while
preserving the idempotent nature of join. This ensures conver-
gence over unreliable communication (on the contrary to op-
based CRDTs that demand exactly-once delivery and are prone
to message duplication). To achieve this, we develop in detail
the concept of Delta State-based CRDTs (δ-CRDT) that we initially
introduced in [2]. In this new (delta) framework, the state is still
a join-semilattice that now results from the join of multiple fine-
grained states, i.e., deltas, generated by what we call δ-mutators.
δ-mutators are new versions of the datatype mutators that return
the effect of these mutators on the state. In this way, deltas can
be temporarily retained in a buffer to be shipped individually (or
joined in groups) instead of shipping the entire object. The changes
to the local state are then incorporated at other replicas by joining
the shipped deltas with their own states.

The use of ‘‘deltas’’ (i.e., incremental states) may look intuitive
in state dissemination; however, this is not the case for state-based
CRDTs. The reason is that once a node receives an entire state,
merging it locally is simple since there is no need to care about
causality, as both states are self-contained (including meta-data).
The challenge in δ-CRDT is that individual deltas are now ‘‘state
fragments’’ and usually must be causally merged to maintain the
desired semantics. This raises the following questions: is merging
deltas semantically equivalent tomerging entire states in CRDTs? If
not, what are the sufficient conditions tomake this true in general?
And underwhat constraints causal consistency ismaintained? This
paper answers these questions and presents corresponding proofs
and examples.

We address the challenge of designing a new δ-CRDT that
conserves the correctness properties and semantics of an existing
CRDT by establishing a relation between the novel δ-mutatorswith
the original CRDT mutators. We prove that eventual consistency is
guaranteed in δ-CRDT as long as all deltas produced by δ-mutators
are delivered and joined at other replicas, and we present a cor-
responding simple anti-entropy algorithm. We then show how to
ensure causal consistency using deltas through introducing the
concept of delta-interval and the causal delta-merging condition.
Based on these, we then present an anti-entropy algorithm for
δ-CRDT, where sending and then joining delta-intervals into an-
other replica state produces the same effect as if the entire state
had been shipped and joined.

We illustrate our approach through a simple counter CRDT and
a corresponding δ-CRDT specification. Later, we present a portfo-
lio of several δ-CRDTs that adapt known CRDT designs and also
introduce a generic kernel for the definition of CRDTs that keep a
causal history of known events and a CRDT map that can compose
them. All these δ-CRDT datatypes, and a few more, are available
online in a reference C++ library [3]. Our experience shows that a
δ-CRDT version can be devised for all CRDTs, but this requires some
design effort that varies with the complexity of different CRDTs.
This refactoring effort can be avoided for new datatypes by writing
all mutations as delta-mutations, and only deriving the standard
mutators if needed; these can be trivially obtained from the delta-
mutators.

This paper is an extended version of [2], adding the following
material: Proofs of conditions to attain equivalence to state based
CRDTs; Anti-entropy algorithm for basic convergence; Portfolio
of delta state CRDTs including simple compositions and anony-
mous replicated types (grow only sets, two phase sets, lexico-
graphic pairs (Soundcloud [9]) last-writer-wins sets), named types
(positive–negative counters, (Cassandra [16]) lexicographic coun-
ters); Kernel for causal CRDTs, with a universal join function; Opti-
mized causal CRDTs (remove-wins sets, (Riak) flags [6]); Recursive
map data type for causal CRDTs.

2. Systemmodel

Consider a distributed system with nodes containing local
memory, with no shared memory between them. Any node can
send messages to any other node. The network is asynchronous;
there is no global clock, no bound on the time a message takes to
arrive, and no bounds on relative processing speeds. The network
is unreliable: messages can be lost, duplicated or reordered (but
are not corrupted). Some messages will, however, eventually get
through: if a node sends infinitely many messages to another
node, infinitely many of these will be delivered. In particular, this
means that there can be arbitrarily long partitions, but these will
eventually heal. Nodes have access to durable storage; they can
crash but will eventually recover with the content of the durable
storage just before the crash occurred. Durable state is written
atomically at each state transition. Each node has access to its
globally unique identifier in a set I.

2.1. Notation

We use mostly standard notation for sets and maps, including
set comprehension of the forms {f (x)|x ∈ S} or {x ∈ S|Pred(x)}. A
map is a set of (k, v) pairs,where each k is associatedwith a single v.
Given amapm,m(k) returns the value associated with key k, while
m{k ↦→ v} denotes m updated by mapping k to v. The domain and
range of a map m is denoted by dom m and ran m, respectively,
i.e., dom m = {k|(k, v) ∈ m} and ran m = {v|(k, v) ∈ m}. We
use fstp and sndp to denote the first and second component of a
pair p, respectively. We use B, N, and Z, for the booleans, natural
numbers, and integers, respectively; also I for some unspecified
set of node identifiers. Most sets we use are partially ordered and
have a least element ⊥ (the bottom element). We use A ↪→ B for a
partial function from A to B; given such a mapm, then dom m ⊆ A
and ranm ⊆ B, and for convenience we usem(k) when k ̸∈ domm
and B has a bottom, to denote ⊥B; e.g., for some m : I ↪→ N, then
m(k) denotes 0 for any unmapped key k.

3. A background of state-based CRDTs

Conflict-Free Replicated Data Types [32,33] (CRDTs) are dis-
tributed datatypes that allow different replicas of a distributed
CRDT instance to diverge and ensures that, eventually, all repli-
cas converge to the same state. State-based CRDTs achieve this
through propagating updates of the local state by disseminating
the entire state across replicas. The received states are then

Download English Version:

https://daneshyari.com/en/article/4951513

Download Persian Version:

https://daneshyari.com/article/4951513

Daneshyari.com

https://daneshyari.com/en/article/4951513
https://daneshyari.com/article/4951513
https://daneshyari.com

