Accepted Manuscript

On finding convex cuts in general, bipartite and plane graphs

Roland Glantz, Henning Meyerhenke

PII: S0304-3975(17)30574-1
DOI: http://dx.doi.org/10.1016/j.tcs.2017.07.026
Reference:
TCS 11266

To appear in: Theoretical Computer Science

Received date: 8 June 2016
Revised date: 24 July 2017
Accepted date: 29 July 2017

Please cite this article in press as: R. Glantz, H. Meyerhenke, On finding convex cuts in general, bipartite and plane graphs, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.07.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

On finding convex cuts in general, bipartite and plane graphs ${ }^{1}$

Roland Glantz and Henning Meyerhenke Institute of Theoretical Informatics
Karlsruhe Institute of Technology (KIT)
Box 6980, D-76128 Karlsruhe, Germany
Email: \{roland.glantz, meyerhenke\}@kit.edu
Corresponding author: Roland Glantz

Abstract

The general notion of convexity also applies to a graph $G=(V, E)$. A subset V^{c} of V is called a convex set if all shortest paths with end vertices in V^{c} remain within V^{c}. A convex cut of G is a partition $\left(V_{1}, V_{2}\right)$ of V such that V_{1} and V_{2} are convex sets (halfspaces). Finding convex cuts is $\mathcal{N} \mathcal{P}$-hard for general graphs.

In this paper we first characterize the convex cuts of a connected bipartite graph G^{\prime} in terms of the Djokovic relation, a reflexive and symmetric relation on the edges of a graph that is based on shortest paths between the edges' end vertices. Specifically, we show that a cut of G^{\prime} is convex if and only if the Djoković relation holds for any pair of edges in its cut-set. As a consequence, all convex cuts of $G^{\prime}=\left\{V^{\prime}, E^{\prime}\right\}$ can be found in $\mathcal{O}\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$.

We then characterize the convex cuts of a general connected graph G using the Djoković-Winkler relation θ and another relation τ on the edges of G. Based on this general characterization, we show how one can find all convex cuts of G in polynomial time. The key parts here are (i) describing the Djoković-Winkler relation on the edges of G in terms of the Djoković relation θ^{\prime} on the bipartite graph obtained from G by subdividing each edge of G into two edges, (ii) studying the interplay of θ^{\prime} and τ on plane curves representing convex cuts, and (iii) a running time analysis of our algorithm for finding the convex cuts.

Our method for characterizing and finding convex cuts of a connected plane graph G is motivated by the concept of alternating cuts and conditions on the latter to be convex. In the last part of this paper we represent alternating cuts as plane curves and focus on their intersection pattern. If the plane curves form an arrangement of pseudolines, G is scale embedded in its dual, and any edge of G is contained in the cut-set of a convex cut of G.

Keywords: Convex cuts, Djoković-Winkler relation, bipartite graphs, plane graphs, alternating cuts, pseudolines

1. Introduction

The very general notion of convexity, best known from the field of convex geometry, has an analog on graphs. Let $G=(V, E)$ be a an undirected and unweighted graph. A subset V^{c} of V is called a convex set if all shortest paths on G with end vertices in V^{c} contain only vertices of V^{c}. We use the term convex subgraph for a subgraph that is induced by a convex set.

A cut of a graph $G=(V, E)$ is a partition $\left(V_{1}, V_{2}\right)$ of V, and the edges between V_{1} and V_{2} form the cut-set of the cut. If V_{1} and V_{2} are convex sets, $\left(V_{1}, V_{2}\right)$ is called convex cut of G, and V_{1}, V_{2} are called convex halfspaces. Artigas et al. [1] showed that, for a given $k \geq 2$, it is $\mathcal{N} \mathcal{P}$-complete to decide whether a (general) graph can be partitioned into k convex sets.

Throughout the paper, $d_{G}(\cdot, \cdot)$ denotes the standard metric on G, i. e., $d_{G}(u, v)$ amounts to the number of edges on a shortest path from u to v. A graph $G=\left(V_{G}, E_{G}\right)$ is isometrically embeddable [scale-k embeddable] into a graph $H=\left(V_{H}, E_{H}\right)$ if there exists a mapping $\alpha: V_{G} \mapsto V_{H}$ such that $d_{G}(u, v)=d_{H}(\alpha(u), \alpha(v))$ $\left[d_{H}(\alpha(u), \alpha(v))=k d_{G}(u, v)\right]$ for all $u, v \in V_{G}$.

[^0]
https://daneshyari.com/en/article/4951937

Download Persian Version:
https://daneshyari.com/article/4951937

Daneshyari.com

[^0]: ${ }^{1}$ Parts of this paper have been published in a preliminary form in the proceedings of CIAC 2013 [15].

