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Given a network and a set of source destination pairs (connections), we consider the 
problem of maximizing the sum of the flow under proportional delay constraints. In 
this paper, the delay for crossing a link is proportional to the total flow crossing this 
link. If a connection supports non-zero flow, then the sum of the delays along any path 
corresponding to that connection must be lower than a given bound. The constraints of 
delay are on–off constraints because if a connection carries zero flow, then there is no 
constraint for that connection. The difficulty of the problem comes from the choice of 
the connections supporting non-zero flow. We first prove a general approximation ratio 
using linear programming for a variant of the problem. We then prove a linear time 
2-approximation algorithm when the network is a path. We finally show a Polynomial 
Time Approximation Scheme when the graph of intersections of the paths has bounded 
treewidth.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The multi-commodity flow problem is a classical network flow problem with multiple commodities (flow demands) be-
tween different source and sink nodes. This problem has been widely studied in the literature. Given a network, a set of 
capacities on edges, and a set of demands (commodities), the problem consists in finding a network flow satisfying all the 
demands and respecting capacities and flow conservation constraints. The integer version of the problem is NP-complete [6], 
even for only two commodities and unit capacities (making the problem Strongly NP-complete in this case). In that ver-
sion, the problem consists of producing an integer flow satisfying all demands and respecting the previously mentioned 
constraints. However, if fractional flows are allowed, the problem can be solved in polynomial time through linear program-
ming [1,4,8].

Network operators must satisfy some Quality of Service requirements for their clients. One of the most important param-
eters in telecommunications networks is the end-to-end delay of a unit of flow between a source node and a destination 
node. This requirement is not taken into account in the multi-commodity flow problem. The delay through a link depends 
on the amount of flow supported by this link; classically it is modeled by a convex function. The end-to-end delay for 
a demand and a path associated with this demand, is the sum of the delays through all links of this path. Some papers 
focus on minimizing the mean end-to-end delay. This problem consists of minimizing a convex function under linear con-
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straints [3,9] and can be solved using semidefinite programming [12]. Other papers focus on finding a multi-commodity 
flow that satisfies the demands and that minimizes the maximum end-to-end delay [5].

As the authors of [2], we think that a more realistic problem consists of adding strict end-to-end delay constraints for all 
connections. Indeed, in communication networks, there are multiple classes of services, and for each of them, it is crucial 
to respect a certain level of Quality of Service, i.e. respecting a threshold for the end-to-end delay. It is why we study a 
multicommodity flow problem in which all demands have to respect an end-to-end delay constraint.

In this paper, we focus on multicommodity network flow problems in which each edge possesses a proportional latency 
function that describes the common delay experienced by the flow on that edge as a function of the flow rate. These 
problems model congestion effects that appear in a variety of applications such as communication networks, vehicular 
traffic, supply chain management, or evacuation planning. In such applications, the latency function need not be proportional 
to the flow rate. We investigate the problem of maximizing the sum of the flow under proportional delay constraints. We 
allow fractional flows for all connections. As mentioned before, we have an end-to-end delay constraint for each demand. 
But, if a path associated with one connection carries zero flow, then the constraint is not active. These on–off constraints 
make the problem more difficult to solve than just a simple linear program [7].

In [2], it is proved that this problem is NP-hard even if there are only two paths per connection. In their proof, delay 
and capacity constraints are used. The complexity of the problem is unknown when only considering delay constraints. We 
formally present our problem in Section 1.1. We then describe a simple example in Section 1.2 and preliminary results in 
Section 1.3. We present our contributions in Section 1.4.

1.1. Problem formulation and model

Let G = (V , E) be a connected undirected graph (that represents a network) with a coefficient αe for each edge e ∈ E . Let 
{(s1, t1), . . . , (sm, tm)} be a set of m source destination pairs (connections). Let P = {P1, . . . , Pm} be a set of m paths in G . 
For all i = 1, . . . , m, Pi is the path, between the source si and the destination ti , allocated to connection (si, ti). Without 
loss of generality, we suppose that there is a unique path for each connection. Indeed, we can have several connections 
involving the same pair of nodes but with different associated paths. We denote by xi the flow through the path Pi for 
all i = 1, . . . , m. We suppose that the delay τe for crossing an edge e ∈ E is proportional to the total flow 

∑
i:e∈E(Pi)

xi

crossing the edge e, i.e. τe = αe
∑

i:e∈E(Pi)
xi . Let λ > 0. For all i = 1, . . . , m, we require for path Pi that, if xi > 0, then the 

end-to-end delay 
∑

e∈Pi
τe is at most λ. By scaling the coefficients of the αe , we can make this bound λ equal to one. 

Using the notation βi, j := ∑
e∈E(Pi)∩E(P j)

αe , these constraints can be written as follows: 
∑m

i=1 βi, j xi ≤ 1. A multicommodity 
flow x = (x1, . . . , xm) is admissible if the following latency requirement is satisfied: for all j = 1, . . . , m such that x j > 0, 
then 

∑
e∈E(P j)

τe ≤ 1. Furthermore, for all i = 1, . . . , m, if xi > 0, then we say that connection (si, ti) and path Pi are active

(inactive otherwise). The Maximum Flow under Delay Constraint problem (FDC) consists in finding among the solutions 
satisfying these constraints a solution of maximum value 

∑m
i=1 xi , i.e.:

⎧⎪⎨
⎪⎩

Max
∑m

i=1 xi∑m
i=1 βi, jxi ≤ 1 j = 1, . . . ,m x j > 0

xi ≥ 0 i = 1, . . . ,m.

The hardness of this problem comes from the choice of the active paths. Indeed, if we are given a set of active paths 
P∗ ⊆ P in some optimal solution, then the problem becomes polynomial since it reduces to solving the linear program 
L P (P∗). Without loss of generality let P∗ = {P1, . . . , Pm∗ } with m∗ ≤ m.

L P (P∗)

⎧⎪⎪⎨
⎪⎪⎩

Max
∑m∗

i=1 xi∑m∗
i=1 βi, jxi ≤ 1 j = 1, . . . ,m∗

xi ≥ 0 i = 1, . . . ,m∗.

The dual of this linear program is:

DL P (P∗)

⎧⎪⎪⎨
⎪⎪⎩

Min
∑m∗

j=1 y j
∑m∗

j=1 βi, j y j ≥ 1 i = 1, . . . ,m∗

y j ≥ 0 j = 1, . . . ,m∗.

Note that L P (P∗) and its dual DL P (P∗) differ only by the sense of inequalities and the direction of optimization. In 
particular, if the system of equations 

∑m∗
i=1 βi, j xi = 1, j = 1, . . . , m∗ , has a solution then this solution is optimal for the 

primal and for the dual since it satisfies both primal and dual complementary slackness conditions.
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