Complexity and kernels for bipartition into degree-bounded induced graphs

CrossMark

Mingyu Xiao ${ }^{\text {a,* }}$, Hiroshi Nagamochi ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
${ }^{\text {b }}$ Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan

ARTICLE INFO

Article history:

Received 11 April 2016
Received in revised form 6 October 2016
Accepted 11 November 2016
Available online 23 November 2016
Communicated by V.Th. Paschos

Keywords:

Graph algorithms
Bipartition
Kernelization
NP-hard
Fixed-parameter tractable

Abstract

In this paper, we study the parameterized complexity of the problems of partitioning the vertex set of a graph into two parts V_{A} and V_{B} such that V_{A} induces a graph with degree at most a (resp., an a-regular graph) and V_{B} induces a graph with degree at most b (resp., a b-regular graph). These two problems are called Upper-Degree-Bounded Bipartition and Regular Bipartition, respectively. When $a=b=0$, the two problems become the polynomially solvable problem of checking the bipartition of a graph. When $a=0$ and $b=1$, Regular Bipartition becomes a well-known NP-hard problem, called Dominating Induced Matching. In this paper, firstly we prove that the two problems are NP-complete with any nonnegative integers a and b except $a=b=0$. Secondly, we show the fixedparameter tractability of these two problems with parameter $k=\left|V_{A}\right|$ being the size of one part of the bipartition by deriving several problem kernels for them and constrained versions of them.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In graph algorithms and graph theory, there is a series of important problems which are going to partition the vertex set of a graph into several parts such that each part induces a subgraph satisfying some degree constraints. For example, the k-coloring problem is to partition the graph into k parts each of which induces an independent set (a 0 -regular graph). Most of these kinds of problems are NP-hard, even if the problem is to partition a given graph into only two parts, which is called a bipartition.

For bipartitions with a degree constraint on each part, we can find many references related to this topic $[2,3,7,12,13,16$, 19]. Here is a definition of the problem:

Degree-Constrained Bipartition

Instance: A graph $G=(V, E)$ and four integers a, a^{\prime}, b and b^{\prime}.
Question: Is there a partition $\left(V_{A}, V_{B}\right)$ of V such that

$$
a^{\prime} \leq \operatorname{deg}_{V_{A}}(v) \leq a \forall v \in V_{A} \text { and } b^{\prime} \leq \operatorname{deg}_{V_{B}}(v) \leq b \quad \forall v \in V_{B},
$$

where $\operatorname{deg}_{X}(v)$ denotes the degree of a vertex v in the induced subgraph $G[X]$?

[^0]There are three special cases of Degree-Constrained Bipartition. If there are no constraints on the upper bounds (resp., lower bounds) of the degree in Degree-Constrained Bipartition, i.e., $a=b=\infty$ (resp., $a^{\prime}=b^{\prime}=0$), we call the problem Lower-Degree-Bounded Bipartition (resp., Upper-Degree-Bounded Bipartition). Degree-Constrained Bipartition with the requirement that $a=a^{\prime}$ and $b=b^{\prime}$ is called Regular Bipartition.

In the definitions of the above problems, a, b, a^{\prime} and b^{\prime} are part of the input. These problems with some fixed values of a, b, a^{\prime} and b^{\prime} have also been studied. We use Lower-Degree-Bounded (a^{\prime}, b^{\prime})-Bipartition, Upper-Degree-Bounded (a, b)-Bipartition and Regular (a, b)-Bipartition to denote the problems where a and b (or a^{\prime} and b^{\prime}) are constants.

Lower-Degree-Bounded $\left(a^{\prime}, b^{\prime}\right)$-Bipartition has been well studied in the literature. Lower-Degree-Bounded (3,3)Bipartition with 4-regular graphs is NP-complete [6], while Lower-Degree-Bounded (2, 2)-Bipartition is linear-time solvable [4]. More polynomial-time solvable cases with restrictions on the structure of given graphs and constraints on a^{\prime} and b^{\prime} can be found in [2,3,7,12,16].

Regular (0,0)-Bipartition is the polynomial-solvable problem of checking whether a given graph is bipartite or not; Regular (0,1)-Bipartition is Dominating Induced Matching, a well studied NP-hard problem also known as Efficient Edge Domination [10,13,19]. However, not many results are known about Upper-Degree-Bounded (a, b)-Bipartition and Regular (a, b)-Bipartition with other constants of a and b.

In this paper, first we show that Upper-Degree-Bounded (a, b)-Bipartition and Regular (a, b)-Bipartition are NPcomplete with any nonnegative integers a and b except $a=b=0$. Next, we give several vertex kernels for Upper-DegreeBounded Bipartition and Regular Bipartition by taking the size $k=\left|V_{A}\right|$ of one part as a parameter, where a and b are part of the input: Upper-Degree-Bounded Bipartition has a kernel of size $O\left((b+1)^{2}(b+k) k\right)$, and Regular Bipartition has a kernel of size $O\left((b+1)(b+k) k^{2}\right)$ for $a \leq b$ or of size $O\left(k^{k+2}\right)$ for $a>b$. We can assume that $a \leq k-1$. The kernel results together with this assumption imply that the two problems are fixed-parameter tractable (FPT) with parameter $k=\left|V_{A}\right|$ when $a \geq b$ and fixed-parameter tractable with parameters $k=\left|V_{A}\right|$ and b when $a<b$. We also discuss the fixed-parameter intractability of our problems with parameter only $k=\left|V_{A}\right|$ when $a<b$.

We notice some related problems, in which the degree constraint on one part of the bipartition changes to a constraint on the size of the part. d-Bounded-Degree Vertex Deletion asks us to delete at most k vertices from a graph to make the remaining graph having maximum vertex degree at most d [9]. Maximum d-Regular Induced Subgraph asks us to delete at most k vertices from a graph to make the remaining graph a d-regular graph [14,15]. Vertex Cover is the special case of the two problems with $d=0$. These two problems can be regarded as such a kind of bipartition problems and have been well studied in parameterized complexity. They are FPT with parameters k and d and $\mathrm{W}[1]$-hard with only parameter k [9, $14,15,17]$. Let $t w$ denote the treewidth of an input graph. Betzler et al. also proved that Upper-Degree-Bounded Bipartition is FPT with parameters k and $t w$ and W[2]-hard with only parameter $t w$ [5]. The parameterized complexity of some other related problems, such as Minimum Regular Induced Subgraph is studied in [1]. Our $O\left((b+1)^{2}(b+k) k\right)$ kernel for Upper-Degree-Bounded Bipartition also implies a quadratic vertex kernel for d-Bounded-Degree Vertex Deletion for each fixed d, since d-Bounded-Degree Vertex Deletion is equivalent to Upper-Degree-Bounded $(k-1, d)$-Bipartition. The best known kernel for d-Bounded-Degree Vertex Deletion is a linear vertex kernel for each fixed $d \geq 0$ [17]. However, the linear vertex kernel cannot be directly extended to Upper-Degree-Bounded (a, b)-Bipartition for each a and b.

The remaining parts of the paper are organized as follows: Section 2 introduces our notation. Section 3 proves the NP-hardness of our problems. Section 4 gives the problem kernels, and Section 5 shows the fixed-parameter intractability. Finally, some concluding remarks are given in the last section. A preliminary version of this paper [18] was presented in the 25th international symposium on algorithms and computation (ISAAC 2014).

2. Preliminaries

In this paper, a graph stands for a simple undirected graph. We may simply use v to denote the set $\{v\}$ of a single vertex v. Let $G=(V, E)$ be a graph, and $X \subseteq V$ be a subset of vertices. The subgraph induced by X is denoted by $G[X]$, and $G[V \backslash X]$ is also written as $G \backslash X$. Let $E(X)$ denote the set of edges between X and $V \backslash X$. Let $N(X)$ denote the neighbors of X, i.e., the vertices $y \in V \backslash X$ adjacent to a vertex $x \in X$, and denote $N(X) \cup X$ by $N[X]$. The degree deg (v) of a vertex v is defined to be $|N(v)|$. A vertex in X is called an X-vertex, and a neighbor $u \in X$ of a vertex v is called an X-neighbor of v. The number of X-neighbors of v is denoted by $\operatorname{deg}_{X}(v)$; i.e., $\operatorname{deg}_{X}(v)=|N(v) \cap X|$. The vertex set and edge set of a graph H are denoted by $V(H)$ and $E(H)$, respectively. When X is equal to $V(H)$ of some subgraph H of G, we may denote $V(H)$-vertices by H-vertices, $V(H)$-neighbors by H-neighbors, and $\operatorname{deg}_{V(H)}(v)$ by $\operatorname{deg}_{H}(v)$ for simplicity. For a subset $E^{\prime} \subseteq E$, let $G-E^{\prime}$ denote the subgraph obtained from G by deleting edges in E^{\prime}. For an integer $p \geq 1$, a star with $p+1$ vertices is called a p-star. The unique vertex of degree >1 in a p-star with $p>1$ is called the center of the star, and any vertex in a 1 -star is a center of the star. We may need to find a maximal set of vertex-disjoint p-stars in a given graph, which can be done in polynomial time by iteratively selecting a vertex of degree $\geq p$ together with arbitrary p neighbors and deleting them from the graph.

For a graph G and two nonnegative integers a and b, a partition of $V(G)$ into V_{A} and V_{B} is called (a, b)-bounded if $\operatorname{deg}_{V_{A}}(v) \leq a$ for all vertices in $v \in V_{A}$ and $\operatorname{deg}_{V_{B}}(v) \leq b$ for all vertices in $v \in V_{B}$. An (a, b)-bounded partition $\left(V_{A}, V_{B}\right)$ is called (a, b)-regular if $\operatorname{deg}_{V_{A}}(v)=a$ for all vertices in $v \in V_{A}$ and $\operatorname{deg}_{V_{B}}(v)=b$ for all vertices in $v \in V_{B}$. An instance $I=(G, a, b)$ of Upper-Degree-Bounded Bipartition (resp., Regular Bipartition) consists of a graph G and two nonnegative integers a and b, and asks us to test whether it admits an (a, b)-bounded partition (resp., (a, b)-regular partition) or not. An

https://daneshyari.com/en/article/4952311

Download Persian Version:

https://daneshyari.com/article/4952311

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: myxiao@uestc.edu.cn (M. Xiao), nag@amp.i.kyoto-u.ac.jp (H. Nagamochi).
 http://dx.doi.org/10.1016/j.tcs.2016.11.011
 0304-3975/© 2016 Elsevier B.V. All rights reserved.

