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Least squares regression is the simplest and most widely used technique for solving 
overdetermined systems of linear equations Ax = b, where A ∈ R

n×p has full column rank 
and b ∈ R

n . Though there is a well known unique solution x∗ ∈R
p to minimize the squared 

error ‖Ax − b‖2
2, the best known classical algorithm to find x∗ takes time �(n), even for 

sparse and well-conditioned matrices A, a fairly large class of input instances commonly 
seen in practice. In this paper, we design an efficient quantum algorithm to generate a 
quantum state proportional to |x∗〉. The algorithm takes only O (log n) time for sparse and 
well-conditioned A. When the condition number of A is large, a canonical solution is to 
use regularization. We give efficient quantum algorithms for two regularized regression 
problems, including ridge regression and δ-truncated SVD, with similar costs and solution 
approximation.
Given a matrix A ∈ R

n×p of rank r with SVD A = U�V T where U ∈ R
n×r , � ∈ R

r×r

and V ∈ R
p×r , the statistical leverage scores of A are the squared row norms of U , 

defined as si = ‖Ui‖2
2, for i = 1, . . . , n. The matrix coherence is the largest statistic leverage 

score. These quantities play an important role in many machine learning algorithms. The 
best known classical algorithm to approximate these values runs in time �(np). In this 
work, we introduce an efficient quantum algorithm to approximate si in time O (log n)

when A is sparse and the ratio between A’s largest singular value and smallest non-
zero singular value is constant. This gives an exponential speedup over the best known 
classical algorithms. Different than previous examples which are mainly modern algebraic 
or number theoretic ones, this problem is linear algebraic. It is also different than previous 
quantum algorithms for solving linear equations and least squares regression, whose 
outputs compress the p-dimensional solution to a log(p)-qubit quantum state.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum algorithms for solving linear systems, and the controversy The past two decades witnessed the develop-
ment of quantum algorithms [22], and one recent discovery is quantum speedup for solving linear systems Ax = b for 
sparse and well-conditioned matrices A ∈ R

n×p . Solving linear systems is a ubiquitous computational task, and sparse and 
well-conditioned matrices form a fairly large class of inputs frequently arising in many practical applications, especially in 
recommendation systems where the data set can be very sparse [31]. The best known classical algorithm for solving linear 
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systems for this class of matrices runs in time O (
√

κsn) [26], where κ is the condition number of A (i.e. the ratio between 
A’s largest and smallest singular values), and the sparseness parameter s is the maximum number of non-zero entries in 
each row of A. Harrow, Hassidim and Lloyd [18] introduced an efficient quantum algorithm, thereafter referred to as HHL 
algorithm, for the linear system problem, and the algorithm runs in time O (s2κ2 log n). The dependence on κ is later im-
proved by Ambainis [1] and the algorithm was used for solving least squares regression (defined next) by Wiebe, Braun and 
Lloyd [30]. HHL algorithm was also extended in [8] to more general problem specifications.

Though the costs of these quantum algorithms are exponentially smaller than those of the best known classical algo-
rithms, there is a catch that these quantum algorithms do not output the entire solution x∗ , but compress x∗ ∈ R

n (assuming 
n = p) into a log n-qubit quantum state. More precisely, the output is a quantum state |x∗〉 proportional to 

∑n
i=1 x∗

i |i〉. This 
important distinction between outputs of classical and quantum algorithms caused some controversy for these quantum 
algorithms. After all, one cannot read out the values x∗

i from |x∗〉. Indeed, if outputting all x∗
i is required as classical algo-

rithms, then any quantum algorithm needs �(n) time even for just writing down the answer, thus no exponential speedup 
is possible.

Despite this drawback, the quantum output |x∗〉 can be potentially useful in certain context where only global infor-
mation of x∗ is needed. For instance, sometimes only the expectation value of some operator associated with x∗ , namely 
x∗T Mx∗ for some matrix M is needed [18]. Another example is when one desires to compute only the weighted sum 

∑
ci x∗

i , 
then SWAP test can be used on |c〉 = ∑

i
ci‖c‖2

|i〉 and |x∗〉 to get a good estimate of 
∑

ci x∗
i in time O (log n). As argued in [1], 

this is impossible for classical algorithms unless P = BQP.
In this paper, we give new quantum algorithms, which also address the controversial issue on two levels. First, we design 

an efficient quantum algorithm for least squares regression, which runs in time O (log n) for sparse and well-conditioned A. 
Same as the one in [30], our quantum algorithm outputs a quantum sketch |x∗〉 only, but our algorithm is simpler, and more 
efficient with a better dependence on s and κ .

In addition, we consider the case that A is ill-conditioned, or even not full-rank. Classical resolutions for such cases 
use regularization. We give efficient quantum algorithms for two popular regularized regression problems, including ridge 
regression and δ-truncated SVD, based on our algorithm for least squares regression.

Second, we also design new efficient quantum algorithms for calculating statistic leverage scores (SLS) and matrix coher-
ence (MC), two quantities playing important roles in many machine learning algorithms [24,13,21,5,14]. Our algorithm has 
cost O (log n) for approximately calculating the k-th statistic leverage score sk for any index k ∈ [n], exponentially faster than 
the best known classical algorithms. Repeatedly applying this allows us to approximately calculate all the statistic leverage 
scores in time O (n log n) and to calculate matrix coherence in time O (

√
n logn), which has a polynomial speedup to their 

classical counterparts of cost O (n2) [12]. Note that different than all aforementioned quantum algorithm that outputs a 
quantum sketch only, our algorithms for calculating SLS and MC indeed produce the requested values, same as their clas-
sical counterpart algorithms’ output. Our algorithms are based on the phase estimation idea as in the HHL algorithm, and 
the results showcase the usefulness of the HHL algorithm even in the standard computational context without controversial 
issue any more.

Next we explain our results in more details.

Least squares regression Least squares regression (LSR) is the simplest and most widely used technique for solving overde-
termined systems. In its most important application – data fitting, it finds a hyperplane through a set of data points while 
minimizing the sum of squared errors. The formal definition of LSR is as follows. Given an n × p matrix A (n ≥ p) together 
with an n-dimensional vector b, the goal of LSR is to compute a p-dimensional vector

x∗ = arg min
x∈Rp

‖Ax − b‖2
2 . (1)

For well-conditioned problems, i.e. those with the condition number of A being small (which in particular implies that 
A has full column rank), it is well known that Eq. (1) has a unique and closed-form solution

x∗ = A+b, (2)

where A+ is the Moore–Penrose pseudoinverse of A. If one computes x∗ naively by first computing A+ and then the product 
A+b, then the cost is O (p2n + n2 p), which is prohibitively slow in the big data era.1 Therefore, finding fast approximation 
algorithms which output a vector x̃ ≈ x∗ is of great interest. Classically, there are known algorithms that output an x̃ with 
a relative error bound 

∥∥x̃ − x∗∥∥
2 ≤ ε ‖x∗‖2 for any constant error 0 < ε < 1, and run in time Õ (nnz(A) + nr) [11,23], where 

nnz(A) is the number of non-zero entries in A, r is the rank of A and the Õ notation hides a logarithmic factor. These 
algorithms are much faster than the naive ones for the special case of sparse or low rank matrices, but remain linear in 
size of A for general cases. Given that it is impossible to have classical approximation algorithms to run in time o(np) for 
general cases, it would be great if there exist much faster quantum algorithms for LSR. Similar to [18], one can only hope to 

1 Though theoretically more efficient algorithms for matrix multiplication exist [27], in practice they are seldom used due to the complication in imple-
menting, parallelization and non-robustness. Thus in machine learning algorithms matrix multiplication Am×n Bn×k is assumed to take time O (mnk). In any 
case it is just a polynomial saving, in contrast to the exponential gap to the quantum algorithm cost.
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