
JID:TCS AID:10636 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.172; Prn:12/02/2016; 14:56] P.1 (1-12)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Quantifying communication in synchronized languages

Zhe Dang a,b, Thomas R. Fischer b, William J. Hutton III b,∗, Oscar H. Ibarra c, 
Qin Li a

a School of Computer Science and Technology, Anhui University of Technology, Ma’anshan, China
b School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
c Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2015
Accepted 28 January 2016
Available online xxxx

Keywords:
Communication complexity
Cryptography
Information theory

A mutual information rate is proposed to quantitatively evaluate inter-process synchronized 
communication. For finite-state processes with implicit communication that can be 
described by a counting language, it is shown that the mutual information rate is 
effectively computable. When the synchronization always happens between the same 
two symbols at the same time (or with a fixed delay), the mutual information rate is 
computable. In contrast, when the delay is not fixed, the rate is not computable. Finally, it 
is shown that some cases exist where the mutual information rate is not computable.

Published by Elsevier B.V.

1. Introduction

Computer systems often run a set of processes communicating with a provided interface for processes to talk with each 
other. The system may implement highly complex functions; e.g., a concurrent system. Obviously, communications between 
two processes contribute significantly to the complexity of the whole system. Therefore, it is desirable to find a way to 
measure the quantity of the communications between two processes. Since such communications are often nondeterministic, 
the quantity would also be part of an indication of hardness of testability when an analyst tests the system.

However, defining such a quantity is not trivial. Static analysis [3,19,23] would not always work because the quantity 
we are looking for is a dynamic indicator on how “tightly” two communicating processes are working together. Another 
idea would be to use the classic theory of communication complexity [13,21,18]. However, this theory aims at studying 
the minimal communication bit-rate needed for a given communication task instead of analyzing the actual amount of 
communication involved between given processes [27].

In this paper, we provide a metric to quantify the amount of communication between two communicating processes 
where the communication mechanism is synchronous. Our ideas are as follows. When a process runs, it demonstrates a 
behavior, which is a sequence (or a word) of events. In this way, two processes, when run synchronously, demonstrate 
two parallel aligned sequences. In automata theory, the parallel sequences can be thought of a word of two tracks called 
a synchronized word. The set of all such synchronized words that are the actual runs of the two communication processes 
forms a synchronized language, written as L12. The metric we study is defined as the information in bits shared between 
two tracks (each called a string, and both strings are of the same length) in a synchronized word of the language.

There has been already a definition of the amount of information contained in a word. This definition was proposed by 
Shannon [22] and later Chomsky and Miller [8], that we have evaluated through experiments [5,11,9,7]. For a number n, 

* Corresponding author.
E-mail address: williamhutton@gmail.com (W.J. Hutton).

http://dx.doi.org/10.1016/j.tcs.2016.01.042
0304-3975/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.tcs.2016.01.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:williamhutton@gmail.com
http://dx.doi.org/10.1016/j.tcs.2016.01.042


JID:TCS AID:10636 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.172; Prn:12/02/2016; 14:56] P.2 (1-12)

2 Z. Dang et al. / Theoretical Computer Science ••• (••••) •••–•••

we use Sn(L) to denote the number of words in a language L whose length is n. The information rate λL of L is defined as 
λL = limλn,L , where λn,L = log Sn(L)

n . When the limit does not exist, we take the upper limit, which always exists for a finite 
alphabet. Throughout this paper, we use log2.

The intuition behind Shannon’s definition is as follows. λn,L specifies the average number of bits needed per symbol, i.e. 
bit rate, if one losslessly compresses a word of length n in L, while the information rate λL is simply the asymptotic bit 
rate. In other words, λL is the average amount of information per symbol contained in a word in L.

Notice that communication passes information between two processes. Let L1 and L2 be the projections of the afore-
mentioned synchronized language L12 to the first and second tracks, respectively. Let w1 and w2 be the aforementioned 
two strings that form a two-track word w12, with length n in the synchronized language L12. By definition, log Sn(L2) is 
the number of bits needed (on average) to encode w2. Those bits are divided into two parts: a) the bits or the informa-
tion that w1 “knows” about or shares with w2 as the result of communication, and b) the bits or the information that 
w1 does not share with w2. There are possibly many occurrences of w2 in L2 to pair with w1 to make a two-track word 
in L12. Due to nondeterminism, the mapping from w1 to w2 is one-to-many. Hence, for part b), what w1 does not know 
is which branch to take in the mapping to reach w2. Notice that Sn(L12)

Sn(L1)
is the average branching factor in the mapping. 

Therefore, log Sn(L12) − log Sn(L1) is the number of bits needed to encode a branch, i.e. the bits in part b). In summary, 
a) is the amount of information shared between w1 and w2 on average, log Sn(L2) − (log Sn(L12) − log Sn(L1)) which equals 
log Sn(L1) + log Sn(L2) − log Sn(L12). Taking its asymptotic form, we now define the mutual information rate to quantify the 
communication in L12:

ηL12 = λL1 + λL2 − λL12 . (1)

In the paper, we show cases when computing the mutual information rate is effective. These cases assume that the two 
processes are finite-state but the implicit communication mechanism between the two makes the resulting synchronized 
language L12 rather complex; e.g., a counting language (a regular language constrained by a Presburger formula on counts 
of individual symbols in a word. Notice that a counting language may be nonregular). We show that when the synchro-
nization always happens between two symbols that are the same and that are at the same time, the mutual information 
is computable. The proof is quite complex, which involves combinatorial analysis of the synchronized words in L12 and 
properties from reversal-bounded counter machines [14]. Later, we also show that this result can be further generalized to 
cases when the two symbols are not necessarily synchronized at the same time (with a fixed delay). However, the case of 
arbitrary delays is not computable. We also present some other uncomputable cases as well.

We note that computing the mutual information rate of L12 is not trivial at all. We have cases (see the comment right 
after Theorem 7) where the information rates of L1 and L2 are computable but the information rate of L12 (and hence 
the mutual information rate ηL12 ) is not computable. We also have cases where the information rate of L12 is computable 
but the information rates of L1 and L2 are unknown to be computable or takes some nontrivial effort in proving their 
computability (as we will show in the proof of Theorem 4).

2. Quantifying communication with information rate

Let � be an alphabet and consider two languages L1 and L2 on the alphabet �. For the purpose of this paper, a word 
on the alphabet represents an observable behavior of a process, which is a sequence of its observable events. Such an event 
can be, for instance, a state transition when the states are observable. Suppose that Pi (i = 1, 2) is a process. One can think 
the two processes as two nodes on a network, two concurrent programs running on a processor, two persons monitored 
by a surveillance cameras in a building, or simply two people dancing on a stage. When the two processes are observed 
together, a joint behavior is obtained. To ease our presentation, we assume that, whenever an event (say a) is observed in 
one process, an event (say b) is also observed in another process. Hence, the two processes, intuitively, run at the same 
pace by observation. Actually, this assumption is made without loss of generality. This is because, one can always introduce 
a new “idle” event into �. At the time when a is observed in one process and, at this time, if no event is observed in 
another, we treat the “no event” as the idle event. The two processes still run at the same pace by observation.

With this formulation, a joint behavior is a synchronized word α on alphabet �k . Without loss of generality, we take 
k = 2 (i.e. two processes). It is trivial to generalize all the results in the paper to an arbitrary k. In the two process case, 
a synchronized word, α, is of the form

(a1
1,a2

1) · · · (a1
n,a2

n) (2)

for some n and some words w1 = a1
1 · · ·a1

n and w2 = a2
1 · · ·a2

n in �∗ . For notational convenience, we often write α = [w1, w2]
while, implicitly, we assume that the two projections w1 and w2 share the same length. In the sequence, w1 is called the 
first coordinate of α while w2 is the second coordinate of α.

The synchronized word α can be thought of as being woven from its first coordinate w1 and second coordinate w2. 
When one thinks of a joint run of two synchronized processes as a synchronized word, a restriction may be placed on the 
possible α so that not every pair of w1 and w2 can be woven into an actual joint run. For instance, under the scenario that 
an event a in process P1 must be synchronized with an event ȧ in process P2, the synchronized word [aba, ̇aȧȧ] cannot be 
a joint run. The exact form of the restriction can be an explicit definition of the communication mechanism used between 



Download English Version:

https://daneshyari.com/en/article/4952420

Download Persian Version:

https://daneshyari.com/article/4952420

Daneshyari.com

https://daneshyari.com/en/article/4952420
https://daneshyari.com/article/4952420
https://daneshyari.com

