Simultaneous encodings for range and next/previous larger/smaller value queries ${ }^{\text {N/ }}$

Seungbum Jo, Srinivasa Rao Satti*

Seoul National University, South Korea

A R T I C L E I N F O

Article history:

Received 2 November 2015
Received in revised form 8 January 2016
Accepted 28 January 2016
Available online xxxx

Keywords:

Range minimum queries
Next/previous larger values
$2 d$-Min heap
Encoding
Balanced parenthesis sequence

Abstract

Given an array of n elements from a total order, we propose encodings that support various range queries (range minimum, range maximum and their variants), and previous and next smaller/larger value queries. When query time is not of concern, we obtain a $4.088 n+o(n)$-bit encoding that supports all these queries. For the case when we need to support all these queries in constant time, we give an encoding that takes $4.585 n+o(n)$ bits, where n is the length of input array. This improves the $5.08 n+o(n)$-bit encoding obtained by encoding the colored $2 d$-Min and Max heaps proposed by Fischer [11]. We first extend the original DFUDS [8] encoding of the colored 2d-Min (Max) heap that supports the queries in constant time. Then, we combine the extended DFUDS of $2 d$-Min heap and 2d-Max heap using the Min-Max encoding of Gawrychowski and Nicholson [15] with some modifications. We also obtain encodings that take lesser space and support a subset of these queries.

(C) 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given an array $A[1 \ldots n]$ of n elements from a total order. For $1 \leq i \leq j \leq n$, suppose that there are m (l) positions $i \leq p_{1} \leq \ldots \leq p_{m} \leq j\left(i \leq q_{1} \leq \ldots \leq q_{l} \leq j\right)$ in A which are the positions of minimum (maximum) values between $A[i]$ and $A[j]$. Then we can define various range minimum (maximum) queries as follows.

- Range Minimum Query $\left(\operatorname{RMinQ}_{A}(i, j)\right)$: Return an arbitrary position among p_{1}, \ldots, p_{m}.
- Range Leftmost Minimum Query ($\left.\operatorname{RLMin}_{A}(i, j)\right)$: Return p_{1}.
- Range Rightmost Minimum Query $\left(\operatorname{RRMinQ}_{A}(i, j)\right)$: Return p_{j}.
- Range k-th Minimum Query $\left(\operatorname{RkMinQ}_{A}(i, j)\right)$: Return $p_{k}($ for $1 \leq k \leq m)$.
- Range Maximum Query ($\left.\operatorname{RMax}_{A}(i, j)\right)$: Return an arbitrary position among q_{1}, \ldots, q_{l}.
- Range Leftmost Maximum Query $\left(\operatorname{RLMax}_{A}(i, j)\right)$: Return q_{1}.
- Range Rightmost Maximum Query $\left(\operatorname{RRMaxQ}_{A}(i, j)\right)$: Return q_{l}.
- Range k-th Maximum Query $\left(\operatorname{RkMax}_{A}(i, j)\right)$: Return $q_{k}($ for $1 \leq k \leq l)$.

Also for $1 \leq i \leq n$, we consider following additional queries on A.

[^0]- Previous Smaller Value $\left(\mathrm{PSV}_{A}(i)\right): \max (j: j<i, A[j]<A[i])$.
- Next Smaller Value $\left(\operatorname{NSV}_{A}(i)\right): \min (j: j>i, A[j]<A[i])$.
- Previous Larger Value $\left(\operatorname{PLV}_{A}(i)\right): \max (j: j<i, A[j]>A[i])$.
- Next Larger Value $\left(\operatorname{NLV}_{A}(i)\right): \min (j: j>i, A[j]>A[i])$.

For defined above four queries formally, we assume that $A[0]=A[n+1]=-\infty$ for $\operatorname{PSV}_{A}(i)$ and $\operatorname{NSV}_{A}(i)$. Similarly we assume that $A[0]=A[n+1]=\infty$ for $\operatorname{PLV}_{A}(i)$ and $\operatorname{NLV}_{A}(i)$.

Our aim is to obtain space-efficient encodings that support these queries efficiently. An encoding should support the queries without accessing the input array (at query time). The minimum size of an encoding is also referred to as the effective entropy of the input data (with respect to the queries) [2]. We assume the standard word-RAM model [3] with word size $\Theta(\lg n)$.

Previous work The range minimum/maximum problem has been well-studied in the literature. It is well-known [4] that finding RMin_{A} can be transformed to the problem of finding the LCA (Lowest Common Ancestor) between (the nodes corresponding to) the two query positions in the Cartesian tree constructed on A. Furthermore, since different topological structures of the Cartesian tree on A give rise to different set of answers for RMin_{A} on A, one can obtain an informationtheoretic lower bound of $2 n-\Theta(\lg n)^{1}$ bits on the encoding of A that answers RMinQ queries. Sadakane [5] proposed the $4 n+o(n)$-bit encoding with constant query time for RMinQ_{A} problem using the balanced parentheses (BP) [6] of the Cartesian tree of A with some additional nodes. Fischer and Heun [7] introduced the $2 d$-Min heap, which is a variant of the Cartesian tree, and showed how to encode it using the Depth first unary degree sequence (DFUDS) [8] representation in $2 n+o(n)$ bits which supports RMinQ_{A} queries in constant time. Davoodi et al. show that same $2 n+o(n)$-bit encoding with constant query time can be obtained by encoding the Cartesian trees [9]. For RkMinQ A_{A}, Fischer and Heun [10] defined the approximate range median of minima query problem which returns a position RkMin_{A} for some $\frac{1}{16} m \leq k \leq \frac{15}{16} m$, and proposed an encoding that uses $2.54 n+o(n)$ bits and supports the approximate $R M i n Q_{A}$ queries in constant time, using a Super Cartesian tree.

For PSV_{A} and NSV_{A}, if all elements in A are distinct, then $2 n+o(n)$ bits are enough to answer the queries in constant time, by using the $2 d$-Min heap of Fischer and Heun [7]. For the general case, Fischer [11] proposed the colored 2d-Min heap, and proposed an optimal $2.54 n+o(n)$-bit encoding which can answer PSV_{A} and NSV_{A} in constant time. As the extension of the PSV_{A} and NSV_{A}, one can define the Nearest Larger Neighbor $(\mathrm{NLN}(i))$ on A which returns $\mathrm{PSV}_{A}(i)$ if $i-\mathrm{PSV}_{A}(i) \leq$ $\mathrm{NSV}_{A}(i)-i$ and returns $\mathrm{NSV}_{A}(i)$ otherwise. This problem was first discussed by Berkman et al. [12] and they proposed a parallel algorithm to answer NLN queries for all positions on the array (this problem is defined as All-Nearest Larger Neighbor (ANLN) problem.) and Asano and Kirkpatrick [13] proposed time-space tradeoff algorithms for ANLN problem. Jayapaul et al. [14] proposed $2 n+o(n)$-bit encoding which supports an $\operatorname{NLN}(i)$ on A in constant time if all elements in A are distinct.

One can support both RMin_{A} and $R M a x Q_{A}$ in constant time trivially using the encodings for $R M i n Q_{A}$ and $R M a x Q_{A}$ queries, using a total of $4 n+o(n)$ bits. Gawrychowski and Nicholson reduce this space to $3 n+o(n)$ bits while maintaining constant time query time [15]. Their scheme also can support PSV_{A} and PLV_{A} in constant time when there are no consecutive equal elements in A.

Our results In this paper, we first extend the original DFUDS [8] for colored 2d-Min(Max) heap that supports the queries in constant time. Then, we combine the extended DFUDS of $2 d$-Min heap and $2 d$-Max heap using Gawrychowski and Nicholson's Min-Max encoding [15] with some modifications. As a result, we obtain the following non-trivial encodings that support a wide range of queries.

Theorem 1. An array $A[1 \ldots n]$ containing n elements from a total order can be encoded using
(a) at most $3.17 n+o(n)$ bits to support $\mathrm{RMinQ}_{A}, \mathrm{RMax}_{A}, \mathrm{RRMin}_{A}, \mathrm{RRMax}_{A}, \mathrm{PSV}_{A}$, and PLV_{A} queries;
(b) at most $3.322 n+o(n)$ bits to support the queries in (a) in constant time;
(c) at most $4.088 n+o(n)$ bits to support $\mathrm{RMinQ}_{A}, \mathrm{RRMin}_{A}, \mathrm{RLMinQ}_{A}, \mathrm{RkMinQ}_{A}, \mathrm{PSV}_{A}, \mathrm{NSV}_{A}, \mathrm{RMaxQ}_{A}, \mathrm{RRMax}_{A}, \mathrm{RLMaxQ}_{A}$, $R k M a x Q_{A}, \mathrm{PLV}_{A}$ and NLV_{A} queries; and
(d) at most 4.585n $+o(n)$ bits to support the queries in (c) in constant time.

If the array contains no two consecutive equal elements, then (a) and (b) take $3 n+o$ (n) bits, and (c) and (d) take $4 n+o$ (n) bits.

This paper organized as follows. Section 2 introduces various data structures that we use later in our encodings. In Section 3, we describe the encoding of colored $2 d$-Min heap by extending the DFUDS of 2d-Min heap. This encoding uses a distinct approach from the encoding of the colored $2 d$-Min heap by Fischer [11]. Finally, in Section 4, we combine the encoding of this colored 2d-Min heap and Gawrychowski and Nicholson's Min-Max encoding [15] with some modifications, to obtain our main result (Theorem 1).

[^1]
https://daneshyari.com/en/article/4952424

Download Persian Version:
https://daneshyari.com/article/4952424

Daneshyari.com

[^0]: मै Preliminary version of these results have appeared in the proceedings of the 21st International Computing and Combinatorics Conference (COCOON2015) [1].

 * Corresponding author.

 E-mail addresses: sbcho@tcs.snu.ac.kr (S. Jo), ssrao@cse.snu.ac.kr (S.R. Satti).
 http://dx.doi.org/10.1016/j.tcs.2016.01.043
 0304-3975/© 2016 Elsevier B.V. All rights reserved.

[^1]: ${ }^{1}$ We use $\lg n$ to denote $\log _{2} n$.

