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a b s t r a c t

Wepresent a free space construction algorithm for a polyhedron that translates in the xy plane and rotates
around its z axis, relative to a stationary polyhedron.We employ the proven paradigm of constructing the
configuration space subdivision defined by patches that comprise the configurations where the boundary
features of the polyhedra are in contact. We implement the algorithm robustly and efficiently. The
challenge is to detect degenerate predicates efficiently and to handle them correctly. We use our ACP
(Adaptive Controlled Perturbation) robustness strategy to prevent degenerate predicates due to input in
special position. The remaining cases are predicates that are identical to the zero polynomial because
their arguments are derived from overlapping sets of input vertices. We detect and handle these cases
with custom logic. We validate the implementation by computing maximum clearance paths.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We present research in rigid body kinematics. We consider a
polyhedron A that translates and rotates in a plane while avoid-
ing a stationary polyhedron B. The polyhedra can have multiple
components and need not be convex. These kinematic pairs model
vehicles that travel on the ground while avoiding obstacles, layout
of parts that rest on a base, and mechanical systems with planar
motion. Fig. 1 shows a simple example in which a tetrahedron A
navigates an obstacle B. Our task is to compute the configurations
(positions and orientations) of A where it is disjoint from B. The
analysis supports motion planning [1], part layout [2], and me-
chanical design [3].

In an appropriately chosen coordinate system, A translates in
the xy plane and rotates by angle θ around its z axis. The manifold
with coordinates (x, y, θ ) is the configuration space. The constraint
that A cannot intersect B restricts A to an open subset of configura-
tion space, the free space. The boundary, the contact space, consists
of the configurations where the boundaries of A and B intersect
but the interiors are disjoint. Fig. 2 shows the contact space of
the example. The free space is its exterior. The free configurations
from Fig. 1 are drawn as green spheres. The tetrahedron can move
in or out of the obstacle along the curve that connects these
configurations.
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Fig. 1. Tetrahedron in four configurations and obstacle.

Wepresent an algorithm for constructing a boundary represen-
tation of free space (Section 3). The key fact is that at a contact
configuration either a vertex of one polyhedron lies on a facet of the
other polyhedron or two edges share a point. The configurations
where a vertex/facet or an edge/edge pair intersect form a surface
called a patch. Fig. 3 shows the two types of patches for our
example and Fig. 4 shows all the patches. The patches subdivide
configuration space into open regions, called cells. The free space
is a disjoint union of cells and the contact space is a subset of the
union of the patches. Our algorithm constructs the subdivision and
identifies the free space cells.

We develop the first robust implementation of the algorithm,
using our ACP robustness strategy [4] (Section 4). We validate the
implementation by computing maximum clearance paths (Sec-
tion 5).
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Fig. 2. Contact space of tetrahedron and obstacle.

Fig. 3. Vertex/facet (left) and edge/edge (right) contacts (a) and corresponding
patches in same colors (b).

Fig. 4. Patches for tetrahedron and obstacle.

2. Prior work

The difficulty of free space construction grows sharply with
configuration space dimension. Dimension two is implemented in
the CGAL library [5]. For dimension three, we have devised state-
of-the-art algorithms for a planar body [4] and for a translating
polyhedron [6]. Both algorithms have the same structure as the
current algorithm – construct the subdivision of the patches and
identify the free cells – and are implemented robustly using ACP.
Kim, Elber, and Kim [7] construct patch intersection curves for
planar bodies bounded by spline curves. The only prior algorithm

for the configuration spaces in this paper [8] is not robust and
never appears to have been implemented. The best algorithm for
configuration spaces of dimension four and up [9] has exponential
complexity in dimension and has not been implemented.

The limited progress in free space construction has led to algo-
rithms in which the configuration space is sampled and the free
samples are linked into a graph via short paths in free space [10].
The hardest case is long narrow passages. One strategy for detect-
ing them is local search near contact configurations [11]. Free space
construction and probabilistic method can also be combined [12].

Wang, Chiang, and Yap [13] argue that exact predicate eval-
uation is too slow for free space construction. They approximate
free spaces of planar bodies using a bounded-depth recursive axis-
parallel subdivision.

The cost of the approximate approaches is proportional to ϵ−d

with ϵ the accuracy and d the dimension of the configuration
space. This cost is prohibitive in robot path planning with narrow
free space passages, in precision assembly planning, in mechanical
design, and in part layout.

Free space construction is related to penetration depth compu-
tation. The penetration depth of a configuration in the complement
of free space is theminimum distance to a configuration in contact
space. In other words, it is the smallest motion that transforms a
configuration in which the parts overlap to one in which they do
not overlap. It appears that the only way to compute the penetra-
tion depth is to construct the free space. The complexity of this
task motivates research on approximate and heuristic penetration
depth computation. Tang and Kim [14] use a heuristic to find a
contact configuration near the overlap configuration then locally
minimize the distance to the overlap configuration. The error is
large when the local minimum is far from the global minimum.
Pan and Manocha [15] approximate the contact space with a
support vector machine (SVM) that they construct from free and
overlap configurations, collected using uniform sampling followed
by active learning. Since an SVM defines a smooth surface, sharp
features and narrow channel are poorly modeled. Kim, Manocha,
and Kim [16] combine this algorithm with local refinement of
the contact space. He, Pan, Li, and Manocha [17] approximate the
contact space with a graph of configurations that they obtain via
randomsampling followed by local search around contact samples.
They compute penetration depth via nearest-neighbor search and
interpolation. The approach is more accurate than prior work, yet
narrow passages remain problematic. None of this work provides
error bounds.

3. Algorithm

The input to the free space construction algorithm is polyhedra
A and B with manifold triangle mesh boundaries. The geometric
part of the algorithm constructs the patches (Section 3.1), the in-
tersection curves of two patches (Section 3.2), and the intersection
points of three patches (Section 3.3). The combinatorial part of the
algorithm constructs the subdivision of the patches and identifies
the cells that comprise the free space (Section 3.4).

3.1. Patches

The configuration of A is C = (u, θ ) with u = (x, y, 0) a
translation vector and with θ a rotation angle around its z axis. A
configuration Cmaps a point p to u+θpwhere θp denotes p rotated
by θ . The image of A is written as A(C). A contact is a configuration C
where (1) a vertex a of A(C) lies on a facet bcd of B, (2) a vertex a of
B lies on a facet bcd of A(C), or (3) an edge ab of A(C) shares a point
with an edge cd of B. The contact is compatible if the interiors ofA(C)
and B are disjoint in a neighborhood of the shared point (Fig. 6).
The compatible contacts form a surface, called a patch. Fig. 5 shows
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