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previous variants of straight skeletons, wavefront edges do not necessarily begin to move at the start of the
propagation process but at later points in time. We analyze the properties of additively-weighted straight
skeletons and show how to compute straight skeletons with both additive and multiplicative weights, i.e.,
where input edges are allowed to move at different speeds and may start at different times.

We then show how to use additively-weighted and multiplicatively-weighted straight skeletons to

Roof generate roofs and terrains for polygonal shapes such as the footprints of buildings or river networks. As

Terrain
Wavefront propagation

aresult, we are able to automatically generate roofs and terrains where the individual facets have different
inclinations and may start at different heights.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
1.1. Motivation and prior work

Straight skeletons were introduced to computational geometry
over 20 years ago by Aichholzer et al. [1]. Suppose that the edges
of a simple polygon P move inwards with unit speed in a self-
parallel manner, thus generating mitered offsets inside of P. Then
the (unweighted) straight skeleton of P is the geometric graph
whose edges are given by the traces of the vertices of the shrinking
mitered offset curves of P; see Fig. 1 and Section 2.

Multiplicatively-weighted straight skeletons were first men-
tioned by Aichholzer and Aurenhammer [2] and then by Eppstein
and Erickson [3]. Roughly, the presence of multiplicative weights
implies that the edges of P are allowed to move inwards at differ-
ent speeds. Recently, multiplicatively-weighted straight skeletons
were studied in detail by Biedl et al. [4], who analyzed under which
conditions properties of the unweighted skeleton carry over to the
weighted pendant.

Unweighted and multiplicatively-weighted straight skeletons
are known to have applications in diverse fields. Aurenhammer [5]
investigates fixed-share decompositions of convex polygons using
skeletons with specific positive multiplicative weights. Barequet
et al. [6] employ multiplicatively-weighted straight skeletons as
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a theoretical tool for computing (unweighted) straight skeletons
in three-space. Barequet and Yakersberg [7] morph shapes by
means of their straight skeletons. Tomoeda and Sugihara use
straight skeletons to create signs with an illusion of depth [8],
and Sugihara also uses multiplicatively-weighted skeletons in the
design of pop-up cards [9]. Haunert and Sester [10] apply them
for topology-preserving area collapsing in geographic information
systems (GIS). In another GIS application, Vanegas et al. [11] use
straight skeletons for generating parcels in urban modeling.

The automatic generation of roofs of buildings based on straight
skeletons of their footprints (i.e., bird’s eye view) has also received
wide-spread attention in large-scale urban modeling. E.g., Larive
and Gaildrat [12], Miiller et al. [13], and Buron et al. [ 14] combine
GIS data and shape grammars with production rules to generate
roofs for buildings. As a starting point or if a purely grammar-
based generation is not possible, they resort to roofs obtained from
straight skeletons. The roofs in the recent work by Sugihara[15,16]
are based on straight skeletons as well. Furthermore, Laycock and
Day [17] and Kelly and Wonka [ 18] use multiplicatively-weighted
straight skeletons for modeling roofs in more realistic ways. Roofs
created by straight skeletons are limited to hip roofs and, with
some postprocessing, gable roofs. Their ridges tend to be parallel
to long edges of the footprint of the building. Typically, such roofs
will not have ridges that are perpendicular to long (parallel) edges
of the footprint.

A problem closely related to the generation of roofs is the
(re-)construction of terrains. For instance, we might be given a
river map together with estimates of the slopes of the terrain.
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Straight skeletons offer a promising approach to both roof genera-
tion and terrain construction. Of course, straight skeletons are not
the only means for generating terrains; see, for instance, [ 19-21].

1.2. Our contribution

We introduce an additively-weighted straight skeleton as a
new generalization of straight skeletons: If additive weights are
present, then edges of the input need not all start to move at
the same time. We analyze the properties of additively-weighted
straight skeletons and show how to extend the standard algo-
rithmic framework for computing straight skeletons (based on
wavefront propagation) to additively-weighted straight skeletons.

We also argue that this framework allows to handle both ad-
ditive and multiplicative weights. Multiplicative weights translate
to different speed functions for the input edges, but each speed
stays constant throughout the entire movement of the edge. As a
matter of fact, in our framework any speed function that remains
piecewise constant could be used for an edge, thus extending
traditional straight skeletons even further. In the limit, at the cost
of combinatorial complexity, piecewise constant speed functions
support arbitrary edge velocity profiles.

The input for our algorithm need not be constrained to simple
polygons. Rather, any planar straight-line graph (PSLG), i.e., any
collection of straight-line segments that do not intersect pairwise
except at common end-points, forms a permissible input.

Combining both additive and multiplicative weights yields in-
put edges that (1) are allowed to move at different speeds and
(2) may start at different times. As a result, we get a process for
automatic generation of roofs or terrains where the individual
facets have different inclinations and may start at different heights.
In particular, additive weights allow for gable roofs without post-
processing, with the ridge being perpendicular to some long edge
of the footprint. General piecewise constant speed functions result
in piecewise linear surfaces (roof, terrain, etc.) where individual
facets may have kinks.

As for unweighted straight skeletons, additively- and
multiplicatively-weighted straight skeletons come with an impor-
tant property: A raindrop that hits a facet of a surface generated
by means of a weighted straight skeleton is guaranteed to run off.
That is, no local minima can occur on the surface.

2. Preliminaries

Wavefront Propagation Process. Let P denote a simple polygon.
The straight skeleton of P is defined by means of a wavefront
propagation process. The wavefront Wp(t) is a set of wavefront
polygons and changes with time t. Initially, at time zero, Wp(0)
consists only of P. Then, as time increases, the edges of WWp(t) move
towards the interior of P at unit speed in a self-parallel manner,
thereby preserving incidences. Thus, the vertices of Wp(t) move
along the angular bisectors of polygon edges, and the wavefront
corresponds to a mitered offset of P; see Fig. 1.

To maintain the planarity of the wavefront during the propa-
gation process, Aichholzer et al. [1] resolve non-planarities when
they occur:

e Inan edge event, an edge of the wavefront has shrunk to zero
length. This edge is removed from the wavefront, resulting
in the two adjacent edges becoming neighbors.

e In a split event, a reflex vertex v reaches another part of the
wavefront. (A vertex v of P is called reflex if the interior
angle at v is greater than 180°, and convex if it is less
than 180°; tangential vertices with interior angle equal to
180° can be ignored during the wavefront propagation.) The
wavefront is split at this locus, and two separate polygons

Fig. 1. Polygon (bold) with its straight skeleton. A family of mitered offset curves,
i.e., the wavefronts at different times, is shown in dotted gray. The straight skeleton
nodes marked with o are the result of split events; the others come from edge
events. The straight skeleton arc marked with x* is one that was added when two
parallel wavefront edges moved into each other.

replace the previous polygon to restore planarity of the
wavefront after the event. Typically this will happen when
v reaches the interior of a wavefront edge. However, if v
reaches another vertex then more complex interactions are
possible, resulting in non-elementary events [22].

Since the wavefront moves inwards within a polygon of finite
extension, at some point f in time all wavefront polygons will have
collapsed, thus resulting in Wp(t) being the empty set. At this time
t the propagation process ends.

Straight Skeleton. The straight skeleton S(P) is the geometric graph
whose edges are the traces of all vertices of Wp(t) over the entire
propagation period. In addition, if two parallel wavefront edges
move into each other during the wavefront propagation, then also
the portion common to them is added to the straight skeleton
while the portions that belong to only one of them remain in
the wavefront [4]. The vertices of S(P) are the endpoints of its
edges. Fig. 1 shows wavefront polygons at different times and the
resulting straight skeleton.

To avoid ambiguities, one generally refers to the edges of the
straight skeleton as arcs and reserves the term edges for the input
polygon and the wavefront. Likewise, the vertices of a straight
skeleton are called nodes.

The straight skeleton of a polygon is a tree and each inte-
rior node of S(P) is of degree three for input in general position
such that only elementary edge and split events occur during the
wavefront propagation [1]. Since the vertices of the wavefront
move along angular bisectors of edges of P, all arcs of the straight
skeleton are straight-line segments.

Faces. The wavefront fragments of the polygon edge e at time t are
contained in e+t - n., where e is the supporting line of e and n, is its
inward facing unit normal. We denote by e(t) the (possibly empty)
set of these wavefront fragments of edge e at time t. Every face of
the straight skeleton is traced out by the fragments of exactly one
input edge over time, i.e., f(e) := |, oe(t) for the face f(e) of edge
e. Furthermore, it is known that f(e) is monotone with respect to
e[1].

Roof Model. The roof model [1] raises the wavefront propagation
into three-space, with the third (z-)coordinate being the time t.
With P embedded in the xy-plane t = 0, the propagation of
the wavefronts over time forms a polytope over P. This piecewise
linear and continuous polytope R(P) := |, o(Wa(t) x {t})is called
the roof of P. This roof is a terrain, i.e., it is a z-monotone surface
where each line parallel to the z-axis intersects it at most once.
The roof model is a useful theoretical tool when dealing with
straight skeletons as it makes some proofs easier. It is also directly
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