
Applied Soft Computing 26 (2015) 235–243

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

An  improved  attribute  reduction  scheme  with  covering  based
rough  sets

Changzhong  Wanga,  Mingwen  Shaob,∗,  Baiqing  Sunc, Qinghua  Hud

a Department of Mathematics, Bohai University, Jinzhou 121000, PR China
b College of Information Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
c Economy and Management School, Harbin Institute of Technology, Harbin 150001, PR China
d School of Computer Science and Technology, Tianjin University, Tianjin 300072, PR China

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 28 October 2012
Received in revised form 3 September 2014
Accepted 7 October 2014
Available online 17 October 2014

Keywords:
Covering based rough set
Attribute reduction
Discernibility matrix

a  b  s  t  r  a  c  t

Attribute  reduction  is viewed  as  an  important  preprocessing  step  for  pattern  recognition  and  data  mining.
Most  of  researches  are  focused  on  attribute  reduction  by using  rough  sets.  Recently,  Tsang  et  al.  discussed
attribute  reduction  with  covering  rough  sets  in  the  paper  (Tsang  et  al.,  2008),  where  an  approach  based
on discernibility  matrix  was  presented  to compute  all attribute  reducts.  In  this  paper,  we  provide  a
new  method  for  constructing  simpler  discernibility  matrix  with covering  based  rough  sets,  and  improve
some  characterizations  of attribute  reduction  provided  by  Tsang  et  al. It is  proved  that  the  improved
discernibility  matrix  is  equivalent  to  the  old  one,  but  the computational  complexity  of  discernibility
matrix  is  relatively  reduced.  Then  we  further  study  attribute  reduction  in  decision  tables  based  on  a
different  strategy  of  identifying  objects.  Finally,  the  proposed  reduction  method  is  compared  with  some
existing  feature  selection  methods  by numerical  experiments  and  the  experimental  results  show  that
the  proposed  reduction  method  is  efficient  and  effective.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Attribute reduction and feature selection have become one of the important
steps for machine learning tasks. Classical rough set theory [21] is a math-
ematical tool for handling data sets with imprecision and uncertainty. It can
be  employed to study attribute reduction and feature selection in information
systems [2,4,6–8,10–17]. Equivalence relations are the mathematical basis for
the rough set theory. On the basis of equivalence relations, samples of a uni-
verse can be partitioned into exclusive equivalence classes, which form basic
information granules. By using basic information granules one can approximate
arbitrary subset of the universe. The main idea of rough sets is to remove redun-
dant information in data and to make correct decision or classification. Rough
set theory has attracted wide attention in both the theory and its applications
[9–19,23–26,29–39].

However, equivalence relation in classical rough set theory is limited in practice,
as  it only deals with discrete variables. There are large amount of continuous data
in  real-life applications. For example, one can be faced with a lot of numerical
data in performance analysis and equipment condition monitoring and diagnosis in
power systems [22]. When dealing with such numerical attributes by using classical
rough sets, numerical attributes are often discretized into symbol-type attributes
as  a pretreatment [20]. This type of conversion can bring information loss, thus
affecting the accuracy of extracted rules [7]. In order to solve this problem, scho-
lars have proposed a series of extensions of the rough set model [1,3,5,18,24,27,31]
and presented some important feature selection criterions [4,6–8,10–16,23,26]. For
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example, Jensen and Shen [7] presented fuzzy-rough reduct algorithm based on
Max-Dependency criterion. Pradipta Maji proposed maximum relevance and max-
imum significance criterion of feature selection based on fuzzy and rough sets
[10–16,23]. These generalized methods of rough sets have been applied successfully
to  feature selection of continuous data [7,10–16]. Another important extension of
rough sets is covering based rough sets. In Ref. [24], Pomykala first introduced the
concepts of covering lower and upper approximation operators in rough approxima-
tion  space. This innovation is based on the substitution of indiscernibility relations
by  coverings. Afterward, many authors investigated properties of covering approx-
imation operators [19,28,32,37–39]. However, few people employ covering based
rough sets to make research on attribute reduction. In [28] a pioneering work related
to  attribute reduction with covering based rough sets was  conducted, where the
authors constructed discernibility matrix, analyzed its some important properties,
and developed an approach to compute all the reducts. Their main idea of attribute
reduction is that each object is associated with a neighborhood, and then the iden-
tification between any two  objects is performed by distinguishing the relationships
of  their neighborhoods. A major drawback of the strategy is that the constructed
formula for computing discernibility matrix is very complicated, and so cannot be
easily applied to practice.

From the viewpoint of classical rough sets, two objects can be distinguished if
one object does not belong to the neighborhood of another one. Since covering
based rough sets are an extension of classical rough sets, we can use the simi-
lar strategy to distinguish objects with different decision values. In this paper, we
present a simple approach to distinguish two objects using covering base rough sets
and reconstruct discernibility matrix of attribute reduction with a simpler formula.
The  reconstruction is consistent to the viewpoint of identifying objects in classical
rough sets. Compared with the approach in [20], the computational complexity of
the improved approach is relatively lower. We improve some important properties
of  attribute reduction proposed in [28]. Furthermore, we  study attribute reduction
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of decision tables based on the improved technique of identifying objects. Finally,
experimental results show that the improved approach is feasible and valid.

The  remainder of this paper is structured as follows. In Section 2, we recall
and define some basic notions related to covering based rough sets. In Section 3,
we  reconstruct the discernible approach to attribute reduction with covering based
rough sets and then develop an approach to attribute reduction in decision tables.
The improved method in this paper is compared with the old one [28] and some
existing feature selection methods by some numerical experiments in Section 4.
Section 5 concludes the paper with a summary.

2. Some notions related to covering based rough sets

Attribute reduction is an important application field of rough set
theory. However, in real world there are lots of data sets that cannot
be handled well by classical rough sets. In light of this, similarity
relation rough sets [27], dominance rough sets [5], and even neigh-
borhood rough sets [6,31] were developed one by one. All these
models induce coverings of a universe, instead of partitions, and
thus can be categorized into covering rough sets, which are more
general than classical rough sets and can handle more complex
tasks.

Granulating information in data sets is the basis of rough set
theory. The granulated information forms elementary information
granules to approximately describe arbitrary concepts in approx-
imation spaces. Covering rough set theory employs the notion of
coverings to granulate information in data sets.

Definition 2.1. [24] Let U be a nonempty and finite set of objects,
where U = {x1, x2, . . .,  xn} is called a universe of discourse. C =

{K1, K2, . . .,  Km} is a family of nonempty subsets of U and
m⋃

i=1

Ki = U.

We say C is a covering of U, Ki is a covering element, and the ordered
pair (U, C) is a covering approximation space.

Definition 2.2. [28] Suppose U is a finite universe and C =
{K1, K2, . . .,  Km} is a covering of U. For any x∈U, let C(x) = ∩{Kj ∈ C :
x ∈ Kj}, then Cov(C) = {C(x) : x ∈ U} is also a covering of U, we call it
the induced covering of C

C(x) is the minimal descriptive subset containing x. This means
C(x) cannot be written as the union of other elements in Cov(C).
Thus C(x) can be seen as the information granule of x with respect
to C and Cov(C) can be viewed as a set of information granules.
These information granules are minimal covering elements associ-
ated with objects. For any x, y∈U, y ∈ C(x) if and only if C(y) ⊆ C(x). So
if y ∈ C(x) and x ∈ C(y), then C(x) = C(y). The relationships between
information granules have the following properties.

(1) Reflexivity: ∀x ∈ U, x ∈ C(x).
(2) Anti-symmetry: if y ∈ C(x) and x ∈ C(y), then C(x) = C(y).
(3) Transitivity: ∀x, y, z ∈ U, if x ∈ C(y) and y ∈ C(z), then x ∈ C(z).

In classification and regression learning, we are usually con-
fronted with the task of approximating some concepts with
provided knowledge. With information granules in covering
approximation spaces, any concepts can be approximated.

Definition 2.3. [28] Let (U, C) be a covering approximation space.
X ⊆ U is an arbitrary subset of the universe. The covering lower
and upper approximations of X are defined as C(X) = {x : C(x) ⊆ X},
C(X) = {x : C(x) ∩ X /= ∅}.
Definition 2.4. [28] Suppose U is a finite universe and � =
{Ci : i = 1, 2, . . .,  m}  is a family of coverings of U. For any x ∈ U,
let �(x) = ∩{Ci(x) ∈ Cov(Ci) : i = 1, 2, . . .,  m}, then Cov(�) = {�(x) :
x ∈ U} is also a covering of U, we call it the induced covering of �.

Clearly, �(x) is the intersection of all the covering elements
including x in all coverings, and so the minimal descriptive set

containing x in Cov(�). Similarly, �(x) can be viewed as the infor-
mation granule of x with respect to � and Cov(�) can be viewed
as a set of information granules with respect to � If every covering
in � is a partition, then Cov(�)  is also a partition and �(x) is the
equivalence class containing x. Each information granule in Cov(�)
cannot be written as the union of other granules. For any x, y ∈ U,
y ∈ �(x) if and only if �(y) ⊆ �(x). So if y ∈ �(x) and x ∈ �(y), then
�(x) = �(y). The relationships between information granules in
Cov(�)  also have such properties as reflexivity, anti-symmetry and
transitivity. Let X ⊆ U, the lower and upper approximations of X
with respect to � are defined as follows:

�(X) = {x ∈ U : �(x) ⊆ X}, �(X) = {x ∈ U : �(x) ∩ X /= ∅}.

Definition 2.5. Let U be a universe and � = {Ci : i = 1, 2, . . .,  m} a
family of coverings on U. Then (U, �)  is called a covering informa-
tion system; � is called a conditional covering (attribute) set.

Definition 2.6. Let (U, �)  be a covering information system and
Ci ∈ �.  Ci is called superfluous in � if Cov(� − {Ci}) = Cov(�), i.e.,
(� − {Ci})(x) = �(x) for any x ∈ U. Otherwise, Ci is called indispens-
able in �. For any subset P ⊆ �.  P is called a reduct of � if each
element in P is indispensable in P and Cov(P) = Cov(�). The col-
lection of all indispensable elements in � is called the core of �,
denoted as Core(�).

Definitions 2.5 and 2.6 are natural extensions of the corre-
sponding concepts in classical rough set theory by substituting
equivalence relations with coverings. It can be seen from the two
definitions that the purpose for reducing conditional covering set
is to find a minimal covering subset that keeps original information
granularity invariant.

3. Attribute reduction based on discernibility matrix

In this section, we first develop some theorems to describe dis-
cernibility between objects. Then, we reconstruct the discernibility
matrix of information systems based on covering and improve
some characterizations of basic properties of attribute reduction.
Finally, we  examine how to find a relative reduct from a given
decision table.

Let U = {x1, x2, . . .,  xn} be a universe, � = {C1, C2, . . .,  Cm} be a
family of coverings of U. For any xi, xj ∈ U, if xj /∈ Ck(xi), then we say
xi and xj can be distinguished by Ck. This statement accords to the
corresponding views in classical rough sets.

Proposition 3.1. Let � = {Ci : i = 1, 2, . . .,  m}  be a family of cov-
erings on U, P ⊆ �. Then Cov(P) = Cov(�)  if and only if �(x) = P(x)
for all x ∈ U. �

The proposition presents an equivalence condition to judge
whether two coverings are equal and shows the fact that two cov-
erings are equal if and only if their induced granularities are equal.

Theorem 3.2. Let � = {C1, C2, . . .,  Cm} be a family of coverings of
U. Then Ci is an indispensable covering if and only if there exist
x, y ∈ U, such that y /∈ �(x) and y ∈ {� − {Ci}}(x).

Proof. Straightforward. �

The above theorem implies that an indispensable covering can
be characterized by the discernibility between objects. That is to
say, Ci is an indispensable covering if and only if there exist x, y ∈ U,
such that y not belonging to the neighborhood of x with respect
to � implies y belonging to the neighborhood of x with respect to
� − {Ci}. This implies that Ci is a sole covering that can distinguish
the two objects.
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