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a b s t r a c t 

We present a novel approach for the calculation of dense correspondences between non-isometric shapes. 

Our work builds on the well known functional map framework and investigates a novel embedding for 

the alignment of shapes. We therefore identify points with their Green’s functions of the Laplace –Beltrami 

operator, and hence, embed shapes into their own function space. In our embedding the L 2 distances are 

known as the biharmonic distances, so that our embedding preserves the intrinsic distances on the shape. 

In the novel embedding each point-to-point map between two shapes becomes and can be represented as 

an affine map. Functional constraints and novel conformal constraints can be used to guide the matching 

process. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

Finding correspondences between two or more shapes is an im- 2 

portant sub-task for a variety of applications, in which informa- 3 

tion has to be transferred or correlated between shapes. For exam- 4 

ple, local deformations can be transferred for shape editing [1–3] , 5 

and correlations between corresponding regions can be exploited 6 

to compress dynamic meshes [4,5] and to create generative shape 7 

models [6–8] . 8 

Finding correspondences is especially interesting between non- 9 

isometric shapes, see Fig. 1 for some examples. Many previous ap- 10 

proaches tailored to register isometric shapes fail in this case. Ex- 11 

trinsic non-rigid ICP [7,9] and variants [1,10–12] suffer from unreli- 12 

able correspondences on extrinsic distances and from difficulties in 13 

solving the non-linear deformation models. The Blended Intrinsic 14 

Maps method [13,14] replaces the extrinsic metric by an intrinsic 15 

one and delivers good registration results by assuming the result- 16 

ing maps to be locally conformal. A problem of BIM is that it is not 17 

clear how to incorporate a priori constraints which might be nec- 18 

essary to guide the method to the correct map out of the multiple 19 

reasonable ones ( Fig. 2 ). Furthermore, the stitching of local maps 20 

leads to inconsistencies at their boundaries. Another group of ap- 21 

proaches embeds shapes into a high dimensional space, where L 2 22 

distances approximate intrinsic distances. Although most of them 23 

allow to incorporate additional constraints, many share the major 24 

drawback that their embedding requires a non-linear alignment. 25 
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Functional maps [15] overcome this problem by constructing an 26 

embedding, in which shapes can be aligned with a linear deforma- 27 

tion. Unfortunately L 2 distances of delta-distributions, that are typ- 28 

ically used to embed points, only approximate intrinsic distances 29 

between intrinsically close points, see Fig. 4 . This is especially im- 30 

portant when only a few implicit constraints are available, such as 31 

when matching non-isometric shapes. 32 

In contrast to functional maps [15] we identify points with their 33 

Green’s functions of the Laplace –Beltrami operator. In this embed- 34 

ding the L 2 distances are the well known biharmonic distances 35 

[16] , which are an intrinsic distance metric on the shape. They are 36 

invariant to isometric shape deformations so that pose deforma- 37 

tions have little influence on the matching process. We calculate 38 

correspondences by aligning these embeddings with an affine de- 39 

formation, which can be computed reliably and efficiently. There 40 

is a linear relation between the Green’s alignment and the (pull- 41 

back) functional map [15] , so that we can incorporate functional 42 

constraints and operator commutativity into our setting. Last but 43 

not least, we can include additional constraints on the alignment, 44 

which require the resulting map to be close to conformal. 45 

The main contributions of our paper are (a) a novel embed- 46 

ding of shapes in the functional map framework by identifying 47 

points with their Green’s functions, (b) combining our novel em- 48 

bedding with functional constraints and (c) including conformality 49 

constraints into functional shape matching. 50 

The paper is organized as follows: Section 2 discussed the re- 51 

lated work. Section 3 introduces the alignment of shapes with 52 

Green’s functions and relates it to the functional maps frame- 53 

work. We further motivate the novel embedding by a com- 54 

paring Green’s functions and delta-distributions in Section 4 . 55 

Then Section 5 shows how to utilize functional constraints and 56 
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Fig. 1. A variety of results gathered with our method. For each class (fourlegged, teddy, humans, birds) there is a single source (black contour) and a variety of target shapes. 

Using the sparse correspondences depicted by small spheres we calculate a dense map from the source to each target shape, which we then use to transfer a color field. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Failure case of Blended Intrinsic Maps, that are difficult to resolve without 

predefined constraints. 

Fig. 3. ( Left) Biharmonic distances d b ( p , x ) from a fixed point p and (right) its 

Green’s function g p and three other Green’s functions. 

Fig. 4. Biharmonic distances and L 2 distances on delta-distributions for different 

numbers of eigenvectors. 

conformality in the matching process. After discussing the dis- 57 

cretization in Section 6 we describe a shape matching algorithm in 58 

Section 7 , which is evaluated in Section 8 . 59 

2. Related work 60 

Estimating correspondences between different shapes is a chal- 61 

lenging task that has been addressed intensively in literature. In 62 

this section, we only provide a brief overview on directly related 63 

works and kindly refer the interested reader to the recent surveys 64 

[17,18] . 65 

2.1. ICP 66 

Initially the problem of shape matching appeared in the con- 67 

text of registering sequential point cloud scans of a static scene. 68 

This led to the development of rigid ICP algorithms [19] , which al- 69 

ternate between detecting corresponding points and rigidly align- 70 

ing shapes. Due to the local optimization, these techniques depend 71 

strongly on the initial correspondences and on heuristics to prune 72 

novel correspondences. A variety of methods extend the original 73 

ICP metaphor to match deformed shapes by allowing non-rigid de- 74 

formations in R 

3 for the alignment [1,7,9–12] , A common short- 75 

coming of these methods is the detection of corresponding points 76 

based on extrinsic instead of intrinsic distances. For deformable 77 

shapes extrinsic distances can be small even for intrinsically dis- 78 

tant points. As a consequence these methods typically require a 79 

large number of point-to-point constraints to begin with and uti- 80 

lize sophisticated heuristics to prune novel correspondences. 81 

The Blended Intrinsic Maps method [13] obtains good results by 82 

concatenating and blending multiple conformal maps into a single 83 

global map. However, it cannot incorporate user constraints, which 84 

are sometimes necessary to solve ambiguities (e.g. Fig. 2 ). Further- 85 

more, at the boundaries of the local maps the results often exhibit 86 

discontinuities. Additionally the method is difficult to generalize to 87 

point-clouds or shapes of genus other than zero. 88 

Other methods map shapes by parameterizing them on a com- Q2 
89 

mon domain and then aligning their parameterizations so that ei- 90 

ther an intrinsic measure of stretch from source to target becomes 91 

minimal [21–25] or so that the integrated stretch along a sequence 92 

of deformations from the source onto the target [26–28] becomes 93 

minimal. These methods deliver continuous maps of high quality, 94 

but are often computational demanding and their application on 95 

non-simple topologies is non-trivial. 96 

Yet another class of methods uses an ICP-like alignment after 97 

embedding shapes into a high dimensional space where L 2 dis- 98 

tances approximate intrinsic ones. Shapes have been embedded 99 

with the eigenvectors of an affinity matrix [29,30] , with an embed- 100 

ding approximating geodesic distances [31] , with an embedding 101 

based on electrostatic repulsion [32] and with delta-functions [33] . 102 

All of these methods use non-linear maps to align the embeddings. 103 

Slightly different are the methods [34,35] , where the alignment of 104 

shapes is avoided by directly embedding one shape into the other 105 

by minimizing a non-linear functional. 106 

2.2. Functional maps 107 

The remarkably successful functional maps framework was in- 108 

troduced in [15] . To the best of our knowledge this paper was 109 

the first to fully exploit the fact that a linear alignment of a 110 
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