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Abstract

Dynamic behaviour of a slider–crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms’
parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control
schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for
the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input
signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom
surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.
& 2016 Society of CAD/CAM Engineers. Publishing Servies by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

High operating speed, superior reliability and accurate
performance are major characteristics of modern industrial
machinery and commercial equipments. A traditional rigid-
body analysis, which presumes low operating speeds, becomes
insufficient to describe the performance of such high speed
systems. A thorough understanding of the dynamic behaviour of
the modern machines undergoing high-speed operations, which
are based on multibody systems such as slider–crank mechan-
isms, is necessary. Several researchers have worked on devel-
opment of suitable formulations with these mechanisms.
Neubauer et al. examined the transverse deflection of an elastic
connecting rod of a slider–crank mechanism by neglecting the
longitudinal deformation, the Coriolois, relative tangential and
relative normal components of the acceleration [1]. Hsieh and
Shaw studied the nonlinear resonance of a flexible connecting
rod by considering both longitudinal and transverse deflection of

the rod [2]. They investigated that the connecting rod behaves as
a system with a softening type of nonlinearity, which is
subjected to external and parametric excitations. Chen and
Chian studied effect of crank length on the dynamic behaviour
of damped flexible connecting rod [3]. Zheng et al. and
Muvengi et al. have considered the effect of joint clearance
and Reis et al added the effect of friction in dynamic analysis of
the mechanism [4–6]. Complexity of the dynamic model of
flexible mechanisms and their high nonlinearities make these
systems hard to control. A few researchers have attempted to
reduce or eliminate the vibrations of flexible mechanisms
induced by one or more of the flexible links [7–9].
Karkoub and Yigit designed a controller for a four-bar

mechanism with a flexible coupler. Their closed-loop system
was able to trace a prescribed motion at the input link level.
The PD controller was able to move the mechanism to the
desired position and absorb the elastodynamic vibrations [10].
Karkoub has also developed a controller based on μ synthesis
for suppressing the elastodynamic vibrations of a slider–crank
mechanism associated with a very flexible connecting rod [11].
Sannah and Smaili designed a multivariable optimal controller
for a four-bar mechanism with a flexible coupler using a finite
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element dynamics model. The results were implemented on an
experimental test bed using a pair of piezoceramic sensors/
actuators [12].

Here, we focus on studying effect of various mechanisms’
parameters on the dynamic behaviour and rotation of the crank
considering the transverse deflection of the connecting rod.
Even with no external excitation, rotation of the crank excites
the connecting rod and induces vibration. We successfully
suppressed the vibrations of the elastic linkage using two
piezoelectric actuators and nonlinear controllers designed
based on feedback linearization and sliding mode.

2. Modeling of the mechanism

Equation of motion of a flexible slider–crank mechanism is
derived using the Euler–Lagrange approach [13–17]. The
mechanism is assumed to move in the horizontal plane and
the longitudinal defections are negligible. Schematic of the
slider–crank mechanism with a flexible connecting rod is
depicted in Fig. 1. The mechanism parameters are defined as
follows: r is the crank length; L is the connecting rod length; θ
is the crank angle; ψ is the connecting rod angle with respect to
the ground; x and w are the x- and y-coordinates, respectively,
of any point on the connecting rod in the e!`1� e!2 coordinate
system.

The location of any point on the flexible connecting rod
(Fig. 1) is given by

R
!¼ r!þ x!þ w! ð1Þ

equal to

R
!¼ ðr cos θþw cos ψþx cos ψÞ i

!

þðr sin θ þw sin ψ �x sin ψÞ j! ð2Þ
The y-component of the displacement of the end point of the

connecting rod at x¼ l, which can be obtained by taking the

scalar product of the displacement vector R
!

and j
!

is equal to
zero. Therefore

ψ ¼ sin �1 r

l
sin θ

� �
ð3Þ

Using the mode summation technique, the deflection w is
given by

w¼
Xn
i ¼ 1

sin
iπx

l

� �
qi ð4Þ

where qiðtÞ are the modes of vibrations of the flexible slider–
crank mechanism. To derive the model for the flexible
mechanism the Euler–Lagrange equations are used. Let
L¼ T�U, where T and U are the kinetic and potential
energies of the system, respectively. The equations of motion
can be obtained using the following equation:

d

dt

∂L
∂_ξi

� �
� ∂L

∂ξi
¼ Fiþτi ð5Þ

where Fi are the nonconservative forces, τi is the applied
torque on the system, and ξ

!
is the deflection vector.

½ξ1; ξ2; :::; ξnþ1� ¼ ½θ; q1ðtÞ; q2ðtÞ; :::; qnðtÞ� ð6Þ
The kinetic energy of the system is then calculated:

T ¼ 1
2
Ic _θ

2þ 1
2
ρ A

Z l

0

_
R
! _

R
!

dxþ 1
2
ms _X

2
B ð7Þ

where ms is the mass of the slider, X
!

B is the velocity of the
connecting rod end point, Ic is the moment of inertia of the
crank, and ρ; A are the density and cross section of the
connecting rod, respectively.

_
R
! _

R
!¼ �r _θ sin θþ _w cos ψþðxþwÞ d cos ψ

dt

� �2

þ r _θ cos θþ _w sin ψþðw�xÞ d sin ψ

dt

� �2

ð8Þ

X
!

B ¼ �r _θ sin θþx
d cos ψ

dt

� �
i
! ð9Þ

The dependent coordinate ψ is then omitted using the
holonomic constraint of the slider–crank mechanism (Eq. (3)).
The potential energy of the mechanism is given by

U ¼ 1
2

Z l

0
EI

∂2w
∂x2

� �2

dxþmcg
r

2
sin θ ð10Þ

Nomenclature

r crank length
L connecting rod length
θ crank angle
ψ connecting rod angle with respect to the ground
qiðtÞ modes of vibrations of the flexible slider–crank

mechanism
Fi nonconservative forces
τi applied torque on the system
ξ
!

deflection vector

Ic moment of inertia of the crank
A cross section of the connecting rod
Ms slider mass
Mc crank mass
EI flexural rigidity
ρ material density
H radius of the rod
d31 dielectric coefficient
V applied voltage to piezoelement
X
!

B velocity of the connecting rod end point

S. Akbari et al. / Journal of Computational Design and Engineering 3 (2016) 312–321 313



Download English Version:

https://daneshyari.com/en/article/4952971

Download Persian Version:

https://daneshyari.com/article/4952971

Daneshyari.com

https://daneshyari.com/en/article/4952971
https://daneshyari.com/article/4952971
https://daneshyari.com

