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a b s t r a c t 

Although white matter hyperintensities evolve in the course of ageing, few solutions exist to consider 

the lesion segmentation problem longitudinally. Based on an existing automatic lesion segmentation al- 

gorithm, a longitudinal extension is proposed. For evaluation purposes, a longitudinal lesion simulator is 

created allowing for the comparison between the longitudinal and the cross-sectional version in various 

situations of lesion load progression. Finally, applied to clinical data, the proposed framework demon- 

strates an increased robustness compared to available cross-sectional methods and findings are aligned 

with previously reported clinical patterns. 
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1. Introduction 

White matter hyperintensities (WMH), also known as 

leukoaraiosis, as observed in FLuid Attenuated Inversion Recovery 

(FLAIR), T2-weighted (T2) and proton density weighted (PD) mag- 

netic resonance (MR) images are widely observed in the ageing 

population. The abnormal signal, explained by a change in the 

fat/water ratio, reflects a damage to the white matter. Hypotheses 

related to deleterious changes in the blood supply and in the 

blood brain barrier ( Wardlaw et al., 2013 ) have been put forward 

to explain the occurrence of such damage, and cardiovascular risk 

factors such as hypertension have been shown to be associated 

to the WMH burden ( Abraham et al., 2015; Vuorinen et al., 2011 ). 

Furthermore, such lesions have been linked with cognitive impair- 

ment, in particular with respect to processing speed and executive 

function ( Prins and Scheltens, 2015; Wakefield et al., 2010 ). 
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To further assess potential causality effects between lesion 

burden and clinical outcome, new emphasis has been given 

to longitudinal studies of lesion load and cognitive assessment 

( Schmidt et al., 2005 ). In normal ageing, increase in the lesion 

volume with time was observed with a higher rate of change cor- 

related with more severe baseline lesion volume ( Pantoni and The 

LADIS Study group, 2011 ). For a normal population, progression 

in leukoaraiosis has been related to motor decline ( Silbert et al., 

2008 ), and cognitive disabilities ( Schmidt et al., 2005 ) as well as 

memory impairment ( Gunning-Dixon and Raz, 20 0 0 ). Additionally, 

lesion burden at baseline has been associated with faster cognitive 

decline in Alzheimer’s disease (AD), mild cognitive impairment 

(MCI) and normal populations ( Carmichael et al., 2010 ). 

The evaluation of WMH progression, however, remains difficult. 

In many cases, visual rating scales are used to assess the increase 

in severity of the lesion burden ( Gouw et al., 2008 ). Most of them 

have however been developed for cross-sectional studies and are 

difficult to utilise in longitudinal cases due to the lack of sensitivity 

to change ( Schmidt et al., 2005 ). Specific progressive rating scales 

have been proposed to alleviate this drawback ( Prins et al., 2004 ), 

but volumetric measurements appear to allow for more accurate 

group differentiation ( Pantoni and The LADIS Study group, 2011 ). 

Even when using semiautomatic segmentation methods for vol- 

ume assessment ( Schmidt et al., 2005 ) instead of performing the 

segmentation manually, the process remains time-consuming and 

the strategy of looking at images back-to-back can introduce bias 
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( Schmidt et al., 2005 ). Therefore, longitudinal, robust automatic 

lesion segmentation solutions are greatly needed. 

Even though imaging time points can be considered indepen- 

dently when automatically measuring the volume of WMH in 

longitudinal studies ( Carmichael et al., 2010 ), it has been shown 

that considering the time points separately within subject intro- 

duced an additional source of variability in the results ( Elliott 

et al., 2013 ). Accounting for the structural similarities between 

time points, or relating the information from one time point to 

others may increase the robustness of the method. 

The problem of longitudinal lesion assessment is of great inter- 

est in other fields of neuroimaging such as multiple sclerosis (MS), 

and various methods have been designed to assess longitudinal 

lesion change. This issue is especially sensitive in MS, in which 

the lesion load progression is non-monotonic. Methods relying on 

the analysis of the differences between registered serial images, as 

in Rey et al. (2002) , may be hindered by other volumetric changes 

occurring between the time points. In studies with long-term 

follow-up, in which the drop-off rate can be high ( e.g. in age- 

related studies), being able to handle different numbers of time 

points is an additional challenge. 

In the context of age-related WMH, the progressive nature of 

the damage can be taken as an argument to consider consecutive 

image pairs as in Bosc et al. (2003) . However, noise and artefacts, 

prevalent in aging or in the demented population, may affect 

methods based on direct comparison; other solutions based on 

image averaging and model building may be advantageous. For 

instance, the use of average images to guide the processing of 

longitudinal data has been promoted in Reuter et al. (2012) . 

The solution developed in this work first consists in creating 

a longitudinal intra-subject average ( Section 2.1 ), followed by the 

estimation of an appropriate joint Gaussian mixture model (GMM) 

( Section 2.2 ) that will finally be used to constrain the lesion 

segmentation at each time point ( Section 2.3 ). The main assump- 

tion of this work is that all time points can be diffeomorphically 

mapped to a subject-specific mean appearance. 

To assess the relevance of the proposed technique for the 

study of WMH progression, a longitudinal lesion simulator was 

developed ( Section 3.1 ) so as to test the method with various 

longitudinal patterns and lesion loads. A surrogate clinical val- 

idation was performed using data from the Alzheimer’s disease 

Neuroimaging Initiative (ADNI) to test whether documented cross- 

sectional as well as longitudinal findings reported in the literature 

could be reproduced. 

2. Method 

In the following the subscript τ denotes a specific time point 

and GW the groupwise average appearance model. Prior to the 

construction of the average, an expectation maximisation (EM) 

algorithm with outlier detection and bias field correction is per- 

formed on each individual time point. The intensities Y τ are the 

resulting log-transformed, normalised and bias field corrected 

intensities of the skull-stripped images. With N the number of 

voxels and D the number of modalities, image intensities are 

vectorised into Y (d) = { y d1 , · · · , y dn , · · · y dN } with y dn the intensity 

at voxel n of modality d , so that 

Y = 

⎛ 

⎝ 

Y (1) 

. . . 

Y (D ) 

⎞ 

⎠ . 

2.1. Longitudinal intra-subject average 

In order to build the average appearance model, two main 

components linking the individual images to the average space are 

needed: a spatial transformation and an intensity transformation. 

An intensity matching between images is needed to account for 

changes in contrast, MR scanning variations and some artefacts. 

These transformations are obtained through an iterative process, 

proved to limit bias towards a specific time point. In order to avoid 

unrealistic spatial deformations, affine transformations roughly 

aligning the images are first applied before considering non- 

rigid transformations to obtain the final spatial transformations 

T τ → GW 

. At each iteration, the intensities of the images spatially 

transformed to the GW space are mapped to the intensities of 

the current average image using a polynomial fit of degree 2 for 

each modality used. More formally, the intensity mapping and 

the resulting mapping coefficients h (d) 
τ for one modality d can be 

expressed as 

argmin 

h (d) 
τ

‖ A 

(
T τ→ GW 

(Y (d) 
τ ) 

)
· h 

(d) 
τ − Y (d) 

GW 

‖ 

2 

where A (T τ→ GW 

(Y (d) 
τ )) is the polynomial matrix transformation of 

T τ→ GW 

(Y (d) 
τ ) such that 

A (Y ) = 

⎛ 

⎝ 

1 y 1 y 2 1 
. . . 

. . . 
. . . 

1 y N y 2 N 

⎞ 

⎠ . 

The steps to create an average appearance model are: 

Step 1 Register each of the individual time points to the current 

average image. 

Step 2 Map the intensities of each resampled image to the 

current average image using a polynomial fit of degree 2. 

Step 3 Average all resampled and intensity transformed images 

to create the new current average image. 

Step 4 Go back to step 1. 

With this set up the loop is performed five times: the first iter- 

ation consists in the estimation of a rigid transformation followed 

by two affine transformations before allowing for a non-rigid 

registration at the last two iterations. 

2.2. Model selection 

After creating the average appearance model, patient-specific 

tissue priors and brain mask are obtained using the GIF (Geodesic 

Information Flow) pipeline developed in Cardoso et al. (2015) . In 

this method, label-fusion is used to generate subject specific tissue 

priors ( A ) by propagating pre-segmented templates and fusing 

them locally according to Cardoso et al. (2015) . Using the priors 

and brain mask as inputs, BaMoS ( Sudre et al., 2015 ) is used to 

model the data according to a three-level Gaussian mixture. The 

first level segments inliers from outliers observations while the 

anatomical tissue information is introduced at the second level 

so that each of the inlier and outlier tissue classes is modelled 

by a Gaussian mixture at the third level of the model. The final 

distribution model is then expressed as 

f ( Y | �K ) = 

N ∏ 

n =1 

∑ 

l∈ I,O 

J ∑ 

j=1 

K l j 
+1 ∑ 

k =1 

πnl j k 
M 

(
y n | θl j k 

)
where πnl j k 

are the spatially varying weights in the mixture ob- 

tained by multiplying the class mixing proportions, and the inlier 

and tissue at the previous levels, l refers to the segmentation 

between inliers ( I ) and outliers ( O ), j to the anatomical classes and 

k to the individual Gaussian components. The notation K is used 

to encompass the model complexity (number of components for 

each tissue class K l j 
), while � gathers the model parameters of 

each individual component (mixture weight w l j k 
, mean μl j k 

and 
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