
Computer Networks 129 (2017) 64–78 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Rethinking robust and accurate application protocol identification 

� 

YiPeng Wang 

a , b , Xiaochun Yun 

a , Yongzheng Zhang 

a , b , ∗, Liwei Chen 

a , Tianning Zang 

a , b , ∗

a Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 
b University of Chinese Academy of Sciences, Beijing, China 

a r t i c l e i n f o 

Article history: 

Received 24 February 2017 

Revised 1 September 2017 

Accepted 11 September 2017 

Available online 14 September 2017 

Keywords: 

Application protocol identification 

Protocol language model 

Networking and network security 

a b s t r a c t 

Protocol traffic analysis is a fundamental problem regarding a variety of networking and security appli- 

cations, such as intrusion detection and prevention systems, network management systems, and protocol 

specification parsers. In this paper, we propose ProHacker, a nonparametric approach that extracts robust 

and accurate protocol keywords from the byte sequences generated by an application protocol, and ef- 

fectively identifies the protocol trace from mixed Internet traffic. ProHacker is based on the key insight 

that the n -grams of protocol traces have highly predictable statistical nature that can be effectively cap- 

tured by statistical language models and be leveraged for robust and accurate protocol identification. In 

ProHacker, we first extract protocol keywords using a nonparametric Bayesian statistical model, and then 

use the corresponding protocol keywords to classify protocol traces by a semi-supervised learning algo- 

rithm. We implement and evaluate ProHacker on real-world traces, and our experimental results show 

that ProHacker can accurately identify the protocol trace with an average precision of about 99.4% and 

an average recall of about 99.28%. We compare the results of ProHacker to one state-of-the-art approach, 

ProWord, and one our previous work, Securitas, using backbone traffic. We note that ProHacker provides 

significant improvements on precision and recall for online protocol identification. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Motivation and problem statement 

This paper concerns the network-based application protocol 

identification based on the packet payload of Internet traffic. Pro- 

tocol traffic analysis requires the identification of protocol key- 

words, which are referred to by us as a set of byte subsequences 

(such as a set of n -grams) or their statistical quantities that can 

be used to distinguish the protocol trace of individual protocols. 

The protocol keyword forms a fundamental building block of deep 

packet inspection tools. The task of protocol keyword inference 

is a fundamental problem for a wide variety of current and fu- 

ture networking and security services, such as network-based In- 

trusion Detection and Prevention Systems (IDSes/IPSes), network 

traffic measurement, network monitoring, and Quality-of-Service 

� The preliminary version of this paper entitled “Rethinking Robust and Accurate 

Application Protocol Identification: A Nonparametric Approach” was published in 

the proceedings of the 23rd IEEE International Conference on Network Protocols 

(ICNP), San Francisco, CA, USA [1] . This work was supported by the National Natural 

Science Foundation of China under Grants No. 61402472 . 
∗ Corresponding authors at: Institute of Information Engineering, Chinese 

Academy of Sciences, Beijing, China. 

E-mail address: wangyipeng@iie.ac.cn (Y. Wang). 

(QoS) [2–4] . Take IDSes/IPSes as an example. The protocol parsers 

of traditional IDSes/IPSes match the packet payload against the 

protocol signatures represented by a set of regular expressions for 

traffic management and control. However, this coarse-grained sig- 

nature checking faces two key challenges: 1). The protocol key- 

words in the protocol parsers may be incomplete; 2). Traditional 

protocol parsers lack the abilities of self-learning and continual- 

learning, which can continually exploit new protocol data from 

unclassified Internet traffic. Thus, modern IDSes/IPSes need more 

advanced parsers to implement their functionalities. Besides ID- 

Ses/IPSes, protocol traffic analysis is also important for an in-depth 

understanding of protocol specifications, such as protocol format 

reverse engineering and protocol state machine inference. The ex- 

plosive growth of emerging network protocols, such as Peer-to- 

Peer (P2P) protocols and mobile applications, has raised a num- 

ber of concerns for security and network management [5] . Thus, 

to conduct fine-grained network-based protocol specification infer- 

ence, we first need to classify the protocol traces more accurately. 

1.2. Related work and their limitations 

The deep understanding of protocol traffic is a core problem re- 

garding network management. Interests in this field have lasted for 

more than 10 years, and the continuous evolution of protocol traf- 

fic analysis justifies this lasting interest. Several elegant approaches 

http://dx.doi.org/10.1016/j.comnet.2017.09.006 

1389-1286/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.comnet.2017.09.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.09.006&domain=pdf
http://dx.doi.org/10.13039/501100001809
mailto:wangyipeng@iie.ac.cn
http://dx.doi.org/10.1016/j.comnet.2017.09.006


Y. Wang et al. / Computer Networks 129 (2017) 64–78 65 

Fig. 1. Example PPLive message for the first 16 B. 

have been proposed in the literature, such as Ma’s work [6] , Dis- 

coverer [7] , KISS [8] , Veritas [9] , ProDecoder [10] , ProWord [11] and 

Securitas [12] . The most recent and relevant works are Securitas 

and ProWord proposed by Yun et al. and Zhang et al, respectively. 

However, the existing solutions have three major limitations. 

First, the completeness of protocol keyword inference for prior 

literatures is limited by the diversity of protocol behaviors ob- 

served in the given trace. For example, considering an SMTP packet 

“STARTTLS ”, if this protocol keyword never appears in the given 

trace for training, oracle for online classification cannot make a 

right distinction to such network packets. Furthermore, even for 

some application protocols with available binary executable code, 

it is still challenging to go through all the protocol states defined 

in the protocol specifications. Thus, the protocol traces used for of- 

fline training dictate the quality of protocol keywords generated 

by the existing approaches. Secondly, existing work is highly sen- 

sitive to statistics. For example, recently n -gram approaches have 

been widely used in the area of networking and network secu- 

rity, and achieved great experimental results in intrusion detection 

[13] (such as anomaly detection), protocol specification inference 

[10] , and protocol identification [12] . An n -gram is considered as 

a subsequence of n elements contained in a given sequence of at 

least n elements. For example, treating each character as an ele- 

ment, the 3-grams generated from message ’ ’RCPT TO” are ”RCP ”, 

“CPT ”, “PT_ ”, “T_T ”, and “_TO ”. Note that even for a modest value 

n (i.e., 3), the number of n -gram elements is tremendous, where 

the state space of 3-grams involves 16 million (256 3 ) unique el- 

ements. Thus, in practice, the n -gram approaches usually select a 

subset of n -grams with high probability of appearance in the pro- 

tocol trace, and directly use the selected subset as the building 

blocks for deep packet analysis. However, this naive solution has 

serious disadvantages. n -grams, that are statistically insignificant 

in the given trace but belong to true protocol keywords, are ig- 

nored in the analysis. In addition, substring-based methods, such 

as ProWord [11] , are also sensitive to statistics. ProWord counts 

the occurrence probability of a byte or subsequence to identify 

field boundaries in protocol packets. Consider the example PPLive 

packet in Fig. 1 , where Offset 5 (i.e., byte “0x53 ”) is a command 

field of PPLive, denoting a request announcement from an ac- 

tive peer. In reality, bytes “0x52 ”, “0x53 ”, “0x54 ”, “0x55 ”, and 

“0x56 ” at offset 5 are all protocol commands for PPLive. We notice 

that the occurrences of byte “0x55 ” at offset 5 are statistically in- 

significant in the trace of PPLive, Thus, network packets with such 

a command are ignored in the previous state-of-the-art solutions. 

In summary, statistics dependency methods decrease the perfor- 

mance on recall and lead to inaccurate results for network-based 

protocol identification. Thirdly, the computational efficiency of the 

prior literatures, such as running speed and memory requirement, 

represents one of their limitations. For example, we notice that Se- 

curitas [12] needs 6–7 ms to process a network packet on a cluster 

machine running at 2.13 GHz. The main reason is that the feature 

extraction process of Securitas for online classification depends 

on a Markov chain Monte Carlo sampling scheme, which needs 

more computational cycles to recover the correlations among the 

n -grams. Thus, we find prior literatures impose more restrictions 

to generate a protocol keyword. To sum up, in this paper we aim to 

address the aforementioned limitations of the existing approaches, 

and provide more accurate results for network-based application 

protocol identification. 

Fig. 2. Architecture of ProHacker. 

1.3. Proposed approach 

In this paper, we propose ProHacker, a nonparametric approach 

that automatically infers robust and accurate protocol keywords 

from the packet payload of network traces and effectively identi- 

fies the protocol trace from mixed Internet traffic. ProHacker re- 

gards application protocols as languages for application softwares, 

in the sense that they both use well-defined formats for data ex- 

change between hosts, and to reach agreement, the technical spec- 

ifications are agreed on by all the parties involved. Our approach is 

based on the key insight that the n -grams of protocol traces, just 

like words of natural languages, have highly predictable statistical 

nature that can be effectively captured by statistical language mod- 

els and be leveraged for robust and accurate application protocol 

identification. 

The key novelty of ProHacker lies in its solution of the zero 

probability problem using a smoothing technique for n -grams that 

were not observed in the selected subset for protocol keyword 

inference. Furthermore, ProHacker addresses the aforementioned 

three limitations of prior work. In practice, ProHacker is based on 

a comprehensive statistical analysis of packet payload, and thus it 

requires no knowledge of protocol specifications as a prior. Fig. 2 

shows the architecture of ProHacker. ProHacker has five major 

modules, (1) Protocol Data Collector, (2) Protocol Language Mod- 

eling, (3) Protocol Keyword Inference, (4) Ensemble Learning and 

(5) Protocol Classifier, for Offline Stage and Online Stage. We next 

give a brief description of the two stages. 

1.3.1. Offline stage 

This stage aims to build two kinds of models for each target 

protocol – language models and detection models. First of all, (1) 

Protocol Data Collector filters mixed Internet traffic in order to la- 

bel packet traces of different application protocols. We give a con- 

crete description to our strategy of this module in Section 5.1 . 

Next, using the collected protocol traces, (2) Protocol Language 

Modeling builds a language model for the bytes sequences gener- 

ated by an application protocol based on a hierarchical Pitman–Yor 

process [14,15] . This module enables ProHacker to derive approxi- 

mate estimates for n -grams that were not observed in the selected 

subset for protocol keyword inference. 

Secondly, using the protocol language models, (3) Protocol Key- 

word Inference extracts the robust and accurate protocol keyword 

associated with each packet as its features. Next, (4) Ensemble 

Learning uses a small amount of labeled network packets and a 

large amount of unlabeled network packets to train a protocol 

classifier for each target protocol. Using the corresponding proto- 



Download English Version:

https://daneshyari.com/en/article/4954566

Download Persian Version:

https://daneshyari.com/article/4954566

Daneshyari.com

https://daneshyari.com/en/article/4954566
https://daneshyari.com/article/4954566
https://daneshyari.com

