
Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Data-aware automatic derivation of choreography-conforming systems of
services

Pablo Rabanala, Jose A. Mateob, Ismael Rodrígueza, Gregorio Díazb,⁎

a Universidad Complutense de Madrid, Madrid 28040, Spain
b Universidad de Castilla-La Mancha, Albacete 02071, Spain

A R T I C L E I N F O

Keywords:
Automatic Web service composition
Formal specification
Web service choreography
Conformance
Data-aware algorithms
FSM

A B S T R A C T

We present two data-aware algorithms to automatically derive web service compositions from global
specifications. We show that a natural projection oriented derivation does not work in general, since some
issues arise when projecting the set of implementations from the global specification, and we show how our
approach deals with them. We use the constructions of two well-known languages as basis to define our models.
In particular, given a WS-CDL choreography, our algorithms automatically extract a set of WS-BPEL compliant
processes such that the interaction among these processes reproduces the behavior depicted in the
choreography. This is achieved by introducing some control messages which make services coordinate as
expected. With respect to our previous work on this kind of derivations, the main improvement of the models
and derivations given in this work is their data-awareness, that is, the introduction of variables within the
model, which strongly improves the expressiveness of our previous model based on FSMs. As a result, the
formal model is enriched with new constructions such as workunits, which enable the definition of a complex
conditional behaviour, and the derivation algorithms are necessarily more complex and sophisticated. The new
derivation algorithms are implemented in the new version of our public derivation tool DIEGO.

1. Introduction

In recent years, Service-Oriented Computing (SOC) has emerged as
a new paradigm to build distributed systems as a composition of
independent services in order to save time and money. Despite these
services can run as stand-alone units to achieve a particular task, they
are usually included within service compositions, and hence the
necessity to define neat and succinct languages to define how the
participants shall interact arises. In particular, the specification of a
web service-oriented system involves two complementary views:
Choreography and Orchestration. On the one hand, the choreography
concerns the observable interactions among services and can be
defined by using specific languages, e.g., Web Services Choreography
Description Language (WS-CDL [34]) or by using more general
languages like UML Messages Sequence Charts (MSC) or, more
recently, using more specific visual languages like Business Process
Model and Annotation 2.0 (BPMN [22]). On the other hand, the
orchestration concerns the internal behaviour of a web service in terms
of invocations to other services. It is supported, e.g., by WS-BPEL [3]
(Web Services Business Process Execution Language), which is the de
facto standard language for describing web service workflows in terms

of web services compositions.
Many researchers have invested their effort to develop efficient

algorithms to construct the local implementation of each participant
given a global specification of the system (related works are discussed
in Section 6). The main issue of such kind of derivations is the fact that
natural projection [24] does not necessarily produce a set of services
conforming to the choreography. Natural projection, as its name
suggests, is a process in which the choreography is projected into n
views (one for each participant). Each projection mimics the structure
of the choreography, although each transition models only the behavior
of the chosen participant in the corresponding transition of the
choreography. We can observe how natural projection works and the
problems related to it in the example depicted in Fig. 1. These systems
show the communication flow of a common internet purchase process
involving three parties, Customers, Sellers and Carriers, represented by
X, Y and Z, respectively. In this example, a customer orders a units of a
product and pays by either debit (msg1) or credit (msg2). Orders are
then processed by the seller depending the type of payment used and
the quantity of units ordered. Orders whose quantity exceeds 10 units
are processed as preferential, unless it is a credit payment —in this
case, the processing can be either preferential o regular depending on

http://dx.doi.org/10.1016/j.csi.2017.03.001
Received 23 November 2016; Received in revised form 28 February 2017; Accepted 2 March 2017

⁎ Corresponding author.
E-mail addresses: prabanal@ucm.es (P. Rabanal), joseantonio.mateo@uclm.es (J.A. Mateo), isrodrig@ucm.es (I. Rodríguez), gregorio.diaz@uclm.es (G. Díaz).

Computer Standards & Interfaces 53 (2017) 59–79

Available online 14 March 2017
0920-5489/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09205489
http://www.elsevier.com/locate/csi
http://dx.doi.org/10.1016/j.csi.2017.03.001
http://dx.doi.org/10.1016/j.csi.2017.03.001
http://dx.doi.org/10.1016/j.csi.2017.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2017.03.001&domain=pdf

internal information regarding the seller, as for instance overproduc-
tion. On the left side of the figure, the choreography Chor defines the
required communication flow among these entities. Before we go on, let
us informally introduce the models used here (they will be formally
defined in subsequent sections). Each transition in the choreography

Chor has the form •⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ •
snd adr⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

cnd m trf

, where • represents a state, snd is the
sender of the message, adr is the addressee, m is the message (it could
include parameters) and cnd is the condition that has to be satisfied to
send the message. The attribute trf is the function which transforms
the variables when the transition is taken. When trf does not modify
the variable values, it is represented with idf, the identity function. For
instance, the first left transition denotes that the message a is sent from
service X to service Y . The condition is always true (⊤) and the
assignment credit false≔ means that the variable credit is assigned to
false when the transition is taken. Regarding the system orchestrations
X, Y, and Z, shown at the right, each transition has the form

•⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ •
cnd snd im adr om trf(,)/(,)

stating that, if the service has a message im from
snd stored in its input-messages buffer and the condition cnd holds,
then it can send a message om to the service adr. As previously, the
variables are updated via the function trf. Each orchestrator is provided
with an input buffer in order to store temporarily the messages
received. In particular (snd,im) can be (− − , − −), meaning that it
is not required the presence of any pair in the input buffer of the service
in order to take the transition. On the contrary, if (adr,om) is
(− − , − −) then taking the transition does not cause any new
message to be sent.1 For instance, the first left transition in service Y
means that this service processes the message msg a1() form the service
X without producing a new message. Then, the variable credit is
assigned to false when the transition is taken.

The aim of this example is to illustrate three problems that are
inherent to a natural projection derivation, as well as the necessity to
use alternative methods to fix them. On the one hand, services could
take the non-deterministic choices of the choreography in a non-
consistent way. In our example, the choreography at the second state
has two possible paths (its left branch or its right branch) and each one
depends on the action taken by service Y (sending msg3() to Z or
sending msg4() to Z, respectively) as well as on the values of a and
credit, representing the number of products and whether the transac-
tion is performed on credit (credit=true) or debit (credit=false). In
both branches, service Y sends messages to Z, but neither Y nor Z
contact X afterwards to inform it about the action taken by Y. Services
Y and Z will follow the same branch because they communicate.
However, since X does not need to have any specific message in its
buffer to take any of its two available transitions (both are labelled with

(− − , − −)/(− − , − −)), X could follow the opposite branch as the
one followed by Y and Z. In order to solve this problem, two main
solutions have been proposed in the literature. First, Qiu et al [24]
introduced the concept of dominant role, i.e. the service whose choice
must be followed by other services. Authors argue that this dominant
role can be selected by the choreographer in the design phase because,
when a designer writes a choice involving multiple roles in a choreo-
graphy, she/he has a clear idea about which role makes the real choice,
whereas the others should follow its decision. An example of a
customer-seller model is introduced. In that work, the customer is
the dominant role, and the sellers are dominated by the customers’
choice. So, there is a clearly differentiated dominant role in that case.
However note that, in web services compositions, some level of fairness
is typically assumed for the sake of decentralization. Consequently, our
solution implements the more general notion of allowing all involved
services to participate in the decision-making process. A second
approach that has been widely followed by researchers consists in
studying the set of restrictions and conditions that choreography
representations must fulfill to make the natural projection work (e.g.
[7,10,16]). In this case, the problem is precisely identified rather than
solved. The choreographies fulfilling these requirements are called well
formed and, essentially, they avoid situations where nondeterminism
occurs. As we will see, some additional control messages will be added
in our derivation in order to make services take the same choices, so all
choreographies will be well formed in our setting. Consequently, our
proposal does not regard the realizability of choreographies (i.e.
whether each choreography can or cannot be converted into an
equivalent orchestration), as those additional messages will let us
realize any system described in our choreography formalism. In
Section 6, a comparison of our approach with these works is presented.

The second problem related with these derivations is the presence
of race conditions. A race condition arises when two messages sent in
some order are received in different order. For instance, if we receive a
message a from a service and next another message b from another
service, then we cannot be sure that a was sent before b was sent, even
if we know that the network is working properly. In this manner, a
service can take a choice based on erroneous information, leading to
unexpected behaviors. We will tackle this problem as follows. As we
commented before, we assume that each service has a buffer which
stores temporarily the received messages before being consumed.
However, buffers do not guarantee that messages will be processed in
the same order as they were sent, as the communication medium can
create arbitrary delays for each message in such an asynchronous
environment. As we will see later, we will introduce some additional
control messages to make sure that the expected order is kept. Coming
back to the natural projection example, even if service X selects the
proper branch in the non-deterministic choice, it could progress to the
last transition and send a message (either msg5() or msg6()) before
service Y has taken any of its two available actions. This is due to

(--,--)/(Z,msg3())

Y

(--,--)/(Z,msg4())

(X,msg1(a))/
(--,--)

(X,msg5())/
(--,--)

(X,msg6())/
(--,--)

(--,--)/(--,--)

X

(--,--)/(--,--)

(--,--)/
(Y,msg1(a))

(--,--)/
(Y,msg5())

(--,--)/
(Y,msg6())

(Y,msg3())/
(--,--)

Z

(Y,msg4())/
(--,--)

(--,--)/
(--,--)

(--,--)/
(--,--)

(--,--)/
(--,--)

Chor
msg1(a)
X Y

msg3()
Y Z

msg4()
Y Z

msg5()
X Y

msg6()
X Y

credit:=false
X Y

credit:=true

(a≤10 credit) (a>10 credit) credit:=false

(--,--)/
(Y,msg2(a))

credit:=true

(X,msg2(a))/
(--,--)

(a>10 credit)(a≤10 credit)

(--,--)/
(--,--)

msg2(a)
т

idf idf

idf idf

т т

т т

т

т т т

idf idf
idf idf

idf idf

тт

т т

т т

idf
idf

idf idf

idf idf
idf idf

т т

т
т

т

idf idf

Fig. 1. Example of a natural projection.

1 If none of them is (− − , − −) then the transition denotes processing some message
and also, as a consequence, sending a message.

P. Rabanal et al. Computer Standards & Interfaces 53 (2017) 59–79

60

Download English Version:

https://daneshyari.com/en/article/4954987

Download Persian Version:

https://daneshyari.com/article/4954987

Daneshyari.com

https://daneshyari.com/en/article/4954987
https://daneshyari.com/article/4954987
https://daneshyari.com

