
DFRWS 2017 USA d Proceedings of the Seventeenth Annual DFRWS USA

Insights gained from constructing a large scale dynamic analysis
platform

Cody Miller a, Dae Glendowne b, Henry Cook c, DeMarcus Thomas b, *, Chris Lanclos b,
Patrick Pape b

a Babel Street, 1818 Library St., Reston, VA, USA
b Distributed Analytics and Security Institute, 2 Research Boulevard, Starkville, MS, USA
c Green Mountain Technology, 5860 Ridgeway Center Parkway, Suite 401, Memphis, TN, USA

Keywords:
Malware
Dynamic analysis
Cuckoo sandbox

a b s t r a c t

As the number of malware samples found increases exponentially each year, there is a need for systems
that can dynamically analyze thousands of malware samples per day. These systems should be reliable,
scalable, and simple to use by other systems and malware analysts. When handling thousands of mal-
ware, reprocessing a small percentage of the malware due to errors can be devastating; a reliable system
avoids wasting resources by reducing the number of errors.

In this paper, we describe our scalable dynamic analysis platform, perform experiments on the plat-
form, and provide lessons we have learned through the process. The platform uses Cuckoo sandbox for
dynamic analysis and is improved to process malware as quickly as possible without losing valuable
information. Experiments were performed to improve the configuration of the system's components and
help improve the accuracy of the dynamic analysis. Lessons learned presented in the paper may aid
others in the development of similar dynamic analysis systems.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

As the arms race between malware creators and security pro-
fessionals progresses, newadaptations are needed, andmade, every
year. One such adaptation on the security side is malware behavior
identification via dynamic analysis. AV-Test indicates that the total
number of newmalware has increased significantly in the past five
years from under 100 million in 2012 to over 500 million in 2016.
Due to this increasing number of newmalware distributed annually,
dynamic analysis systemsmust be able to process tens of thousands
ofmalware samples per day. In order tomeet such a large quota, and
remain manageable, the systems need to be reliable, scalable, and
convenient for the users. In the effort to create such a system, there
are many turning points at which a decision impacts performance
and efficiency. It is important to consider all the viable options for
these turning points, which can be an overwhelming task for an
already complex system. The research presented in this paper seeks
to improveunderstandingof these choices bypresentingour system

design, and the decisions that were made to ensure high perfor-
mance and quality of dynamic analysis.

The main software component of the system described in this
paper is the open-source dynamic malware analysis platform
Cuckoo Sandbox developed by Guarnieri et al. (2013). Due to
Cuckoo Sandbox's broad range of virtualization software support
and customization (as a result of it being open source and of its
extensive plugin support), a multitude of customized systems can
be developed around it. The system presented in this paper is just
one such iteration, optimized and backed up by testing options at
various decision points. Some of the optimization areas focused on
in this research include: identifying performance bottlenecks,
efficient machine/software configurations for virtualization, and
malware execution time limit tradeoffs. Along with the optimiza-
tion solutions, we also discuss how the presented system is scalable
due to our distribution scheme and database storage. Along with
detailed explanations of the above areas, within the context of our
developed system, this paper provides some lessons learned
throughout the process which can aid in the future development
and improvement of similar systems.

The growth of malware samples found each year puts more
expectations on an already taxing responsibility as a digital* Corresponding author.

E-mail address: dmt101@dasi.msstate.edu (D. Thomas).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2017.06.007
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 22 (2017) S48eS56

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dmt101@dasi.msstate.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.06.007&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.06.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.06.007
http://dx.doi.org/10.1016/j.diin.2017.06.007


forensics examiner. The only way that digital forensics examiners
will be able to respond to the enormous amount of malware
being developed is through more sophisticated tools that are
developed through lessons of past and current tools. The first
contribution of this research is the scalable dynamic analysis
platform, which could be used by digital forensics examiners to
respond to the sheer amount of malware being developed yearly.
Secondly, this paper discusses the different experiments that
were used to optimize the platform. Lastly, in the process of
developing the scalable dynamic analysis platform, lessons were
discovered that should be taken into consideration by future
digital forensic tool developers. The lessons could be just as
important as the scalable tool because of the ever changing
digital environment.

Related work

According to Kruegel (2014), three main aspects of a dynamic
analysis system must be true for it to be effective: visibility,
resistance to detection, and scalability. Visibility is the ability to
effectively monitor the activity of a sample in an analysis envi-
ronment. With the increased environmental-awareness of mal-
ware samples, a sandbox must also be effective at hiding their
presence to avoid identification. In addition to these, the ability
to process samples at a high rate is a requirement due to the
sheer volume of malware samples being produced. Kirat et al.
(2011) compare the processing and restore speeds for varying
analysis environments, and compare the number of samples that
can be processed within a minute. In their experiments, they
compared results from BareBox, VirtualBox, and QEMU for
automated analysis of 100 samples. The results show the ability
to run 2.69, 2.57, and 3.74 samples per minute respectively when
the samples were executed for 15 s each. Blue coat malware
analysis s400/s500 is a sandbox solution that states the ability
to process 12,000 samples daily.

When considering a dynamic analysis system, you must also
consider the method that tools use to extract information.
Guarnieri et al. (2013) suggested that most systems will monitor
the API calls (systems calls) to obtain an idea of what may be
occurring in the system. In addition to this, some systems will also
monitor the steps between API calls (Kruegel, 2014), perform taint
analysis to monitor information as it propagates through the sys-
tem (Song et al., 2008), execute samples multiple times with
varying OS's and system configurations to identify environment
sensitivity (Song et al., 2008; Provataki and Katos, 2013), execute
hardware emulation (Kruegel, 2014), use bare-metal systems to
avoid evasive techniques (Kirat et al., 2011; Kirat et al., 2014),
incorporate integration with memory analysis frameworks
(Guarnieri et al., 2013), etc. Also, when considering an analysis
system, the pros and cons of open-source vs. closed-source projects
must be evaluated.

An additional aspect to consider for any dynamic analysis
environment is selecting an optimal time of execution per sample.
Keragala (2016) stated that samples can exhibit stalling behavior to
defeat time-out limits of some systems if not properly selected.
Several works did not state a specific execution period, but analysis
reports showed execution times ranging between 2 and 3 min
(Provataki and Katos, 2013; Vasilescu et al., 2014; Rieck et al., 2011).
Lengyel et al. (2014) selected an arbitrary duration period of 60 s. To
our knowledge, there has only been a single published work
(Kasama, 2014) which performed an empirical evaluation of the
optimal execution time for samples in a dynamic analysis system.
However, this work had a limited number of samples (5,697) and
captured API calls. The experiment in this paper is meant to confirm
the results presented by Kasama.

System overview

Cuckoo Sandbox

Cuckoo Sandbox is an automated dynamic analysis sandbox
created by Guarnieri et al. (2013). Cuckoo allows the submission of
files to be run in an isolated environment. Cuckoo first reverts a VM
to a base snapshot (one that is not affected by malware), then it
runs themalware on the VM.While themalware sample is running,
Cuckoo collects information about what it does in the sandbox such
as: API calls, network traffic, files dropped, etc. Cuckoo's collected
information will be referred to as a Cuckoo sample for the
remainder of this paper. Spengler created Spender-sandbox
(Cuckoo 1.3), a modified version of Cuckoo 1.2 that adds a num-
ber of features and bug fixes. “Cuckoo modified” (a branch separate
from themain Cuckoo version branch) was selected over Cuckoo 1.2
because the modified version adds, among other things, new hooks
and signatures.

Cuckoo nodes

To process malware, five hosts running ESXi 5.5.0 were used.
The hardware varies slightly between the hosts, two of them have
16 physical cores and three of them have 20 physical cores and all
five have 128 Gib of RAM. Each host also has an adapter connected
to an isolated network that the hosts share. A virtual machine (VM)
running CentOS 7 and Cuckoo (i.e., a Cuckoo node) is on each host
and has 64 Gib of RAM and 28 virtual cores. The Cuckoo nodes each
have 20 Cuckoo agent VMs within them. All together there are 100
Cuckoo agent VMsmanaged by the five Cuckoo nodes. This setup of
VMs inside of a VM was chosen because, according to Kortchinsky
(2009) and Wojtczuk and Rutkowska, though unlikely, malware
can escape the agent VM and attack the host; keeping the agent
inside another VM adds another layer of isolation.

Cuckoo agents

The driving research behind implementing this system focuses
primarily on malware that targets the 32-bit version of Windows 7.
Therefore, Windows 7 32-bit virtual machines were used for the
Cuckoo agents; QEMU version 2.5.1 was used as the virtualization
architecture. The agent virtual machines have: a new installation of
Windows 7, 512 Mib of RAM, 1 CPU core, Adobe Reader 11, Python
2.7 installed, and have Windows firewall and UAC disabled. All the
agent VMs used the network adapter on the node that is connected
to the isolated network of VM hosts.

INetSim

All the agent VMs were connected to an isolated network that
does not have access to the Internet. INetSim was created by
Hungenberg and Eckert and was used to spoof various Internet
services such as DNS, HTTP, and SMTP. It runs on its own VMwhich
is on the same network as the agent VMs. Gilboy (2016) stated that
INetSim can improve malware execution as it can trick malware
that require the Internet. However, this does not help if the mal-
ware needs external resources, such as a command and control
server, as INetSim does not provide external (Internet) resources to
the isolated network.

Results server

The results server is a VM that provided a way to get the Cuckoo
samples from the Cuckoo nodes directly without using Cuckoo's
built-in API to fetch the results, thus improving transfer and

C. Miller et al. / Digital Investigation 22 (2017) S48eS56 S49



Download English Version:

https://daneshyari.com/en/article/4955618

Download Persian Version:

https://daneshyari.com/article/4955618

Daneshyari.com

https://daneshyari.com/en/article/4955618
https://daneshyari.com/article/4955618
https://daneshyari.com

