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a b s t r a c t

Database Management Systems (DBMS) are routinely used to store and process sensitive enterprise data.
However, it is not possible to secure data by relying on the access control and security mechanisms (e.g.,
audit logs) of such systems alone e users may abuse their privileges (no matter whether granted or
gained illegally) or circumvent security mechanisms to maliciously alter and access data. Thus, in
addition to taking preventive measures, the major goal of database security is to 1) detect breaches and
2) to gather evidence about attacks for devising counter measures. We present an approach that eval-
uates the integrity of a live database, identifying and reporting evidence for log tampering. Our approach
is based on forensic analysis of database storage and detection of inconsistencies between database logs
and physical storage state (disk and RAM). We apply our approach to multiple DBMS to demonstrate its
effectiveness in discovering malicious operations and providing detailed information about the data that
was illegally accessed/modified.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Database Management Systems (DBMSes) are commonly used
to store sensitive data and, accordingly, significant effort has been
invested into securing DBMSes with access control policies.
However, once a user has gained elevated privileges in the DBMS
(either legitimately or through an attack), the security scheme put
into effect can be bypassed, and therefore, can no longer assure
that data is protected according to policy. A well-known fact from
security research and practice is that it is virtually impossible to
create security measures that are unbreakable. For example, access
control restrictions 1) may be incomplete, allowing users to
execute commands that they should not be able to execute and 2)
users may illegally gain privileges by using security holes in DB or
OS code or through other means, e.g., social engineering. Thus, in
addition to deploying preventive measures such as access control,
it is necessary to be able to 1) detect security breaches when they

occur in a timely fashion and 2) in event of a detected attack collect
evidence about the attack in order to devise counter-measures and
assess the extent of the damage, e.g., what information was leaked
or perturbed. This information can then be used to prepare for
legal action or to learn how to prevent future attacks of the same
sort.

When malicious operations occur, whether by an insider or by
an outside attacker that breached security, an audit log containing a
history of SQL queries may provide the most critical evidence for
investigators (Mercuri, 2003). The audit log can be used to deter-
mine whether data has been compromised and what records may
have been accessed. DBMSes offer built-in logging functionality but
can not necessarily guarantee that these logs are accurate and have
not been tampered with. Notably, federal regulations, such as the
Sarbanes-Oxley Act (S.-O. Act) and the Health Insurance Portability
and Accountability Act (A. Act, 1996), require maintaining an audit
trail, yet the privileged user can skirt these regulations by manip-
ulating the logs. In such cases, companies maintaining these sys-
tems are, technically, in violation of these regulations. Hence,
assurance that security controls have been put into place properly
cannot rest merely on the existence of logging capabilities or the
representations of a trusted DBA. Internal controls are needed in
order to assure log integrity.
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Example 1. Malice is the database administrator for a government
agency that keeps criminal records for citizens (an example instance is
shown in Fig. 1). Malice recently got convicted of fraud and decided to
abuse her privileges and delete her criminal record by running
DELETE FROM Record WHERE name ¼ ‘Malice’. However, she is
aware that database operations are subjected to regular audits to
detect tampering with the highly sensitive data stored by the agency.
To cover her tracks, Malice deactivates the audit log before running the
DELETE operation and afterwards activates the log again. Thus, there
is no log trace of her illegal manipulation in the database. However,
database storage on disk will still contain evidence of the deleted row
(until several storage artifacts caused by the deleted are physically
overwritten). Our approach detects traces of deleted and outdated
record versions and matches them against the audit log to detect such
attacks and provide evidence for how the database was manipulated.
Using our approach, we would detect the deleted row and since it does
not correspond to any operation in the audit log we would flag it as a
potential evidence of tampering.

In Section Reliability of Database Logs we showcase, for several
databases, how an attacker like Malice can ensure that her opera-
tions are not being included in the audit log. Given that it is possible
for a privileged attacker to erase log evidence and avoid detection,
the challenge is to detect such tampering and collect additional
evidence about the nature of the malicious operations (e.g., recover
rows deleted by a malicious operation). It may not be immediately
clear that this recovery of evidence is possible at all. However, any
operation leaves footprints in database storage on disk (writes) or
in RAM (both reads and writes). For instance, DBMSes mark a
deleted row rather than overwrite it. Thus, if we recover such ev-
idence directly from storage then, at least for some amount of time
until the deleted value is overwritten by future inserts, wewould be
able to detect that there exists a discrepancy between the content
of the audit log and database storage.

Given that evidence of operations exists in database storage, the
next logical question to ask is whether Malice can remove this
evidence by modifying database files directly. While a user with
sufficient OS privileges may be able to modify database files, it is
extremely challenging to tamper with database storage directly
without causing failures (e.g., DBMS crashes). Direct manipulation
of DBMS files will uncover the tampering attempt because: 1) in
addition to the actual record data on a page, the database system
maintains additional references to that record (e.g., in index

structures and page headers). Deleting a record from a page
without modifying auxiliary structures accordingly will leave the
database in an inconsistent state and will lead to crashes; 2) da-
tabases have built-in mechanisms to detect errors in storage, e.g.,
checksums of disk pages. A tampering attempt has to correctly
account for all of these mechanisms; 3) incorrect storage for a value
can corrupt a database file. To directly modify a value, an attacker
needs to know how the DBMS stores datatypes.

Because it is not only hard but, at times, next to impossible to
spoof database storage, it follows that database storage can provide
us with valuable evidence of attacks. We use an existing forensic
tool called DICE (Wagner et al., 2017) to reconstruct database
storage. However, we are still left with the problem of matching
recovered artifacts to queries in audit log e doing so requires a
thorough analysis of how database storage behaves. Our approach
automatically detects potential attacks by matching extracted
storage entries and reporting any artifacts that cannot be explained
by logged operations (summarized in Fig. 2). Our method is
designed to be both general (i.e., applicable to any relational
database) and independent (i.e., entirely outside of DBMS control).
Our system DBDetective inspects database storage and RAM
snapshots and compares what it finds to the audit log; the analysis
of this data is then done out of core without affecting database
operations. DBDetective can operate on a single snapshot from
disk or RAM (i.e., multiple snapshots are not required), but addi-
tional snapshots provide extra evidence and improve detection
quality. Data that has changed between two snapshots need be
matched only against audit log entries of commands that were
executed during the time span between these snapshots. Thus,
more frequent snapshots increase the detection accuracy because it
is less likely to match a row against an incorrect operation and the
probability that deleted rows are still present is higher. Moreover,
frequency of snapshots increase the performance of detection
because a smaller number of recovered rows have to be matched
against a smaller number of operations. We can reduce storage
requirements by only storing deltas between snapshots in the same
fashion as incremental backups are used to avoid the storage
overhead of full backups.

Our focus is on identifying the likelihood of database tampering,
as well as pointing out specific inconsistencies found in database
storage. Determining the identity of the party responsible for
database tampering is beyond the scope of this paper. Due to the

Fig. 1. Illustrates that the active records for Peter and Bob can be explained by audit log events, whereas the deleted record Malice can not be explained by any audit log events.

Fig. 2. Architecture of the DBDetective.
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