
Applied Soft Computing 19 (2014) 252–263

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Shuffled frog leaping algorithm and its application to 0/1 knapsack
problem

Kaushik Kumar Bhattacharjee, S.P. Sarmah ∗

Department of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur, WB 721302, India

a r t i c l e i n f o

Article history:
Received 9 February 2012
Received in revised form 5 November 2013
Accepted 9 February 2014
Available online 5 March 2014

Keywords:
Meta-heuristics
Discrete shuffled frog leaping algorithm
Knapsack problem
Genetic mutation

a b s t r a c t

This paper proposes a modified discrete shuffled frog leaping algorithm (MDSFL) to solve 01 knapsack
problems. The proposed algorithm includes two important operations: the local search of the ‘particle
swarm optimization’ technique; and the competitiveness mixing of information of the ‘shuffled complex
evolution’ technique. Different types of knapsack problem instances are generated to test the convergence
property of MDSFLA and the result shows that it is very effective in solving small to medium sized
knapsack problems. Further, computational experiments with a set of large-scale instances show that
MDSFL can be an efficient alternative for solving tightly constrained 01 knapsack problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The knapsack problem is one of the classical NP-hard optimiza-
tion problem and the decision problem belongs to the class of
NP-complete. It is thoroughly studied in the literature for last few
decades. It offers many practical applications in vast field of differ-
ent areas, such as project selection [1], resource distribution [2],
network interdiction problem [3], investment decision-making [4]
and so on. 01 knapsack problem is defined by: given a set of items,
each with a weight and a value, determine the number of each
item to include in a collection so that the total weight is less than
a given limit and the total value is as large as possible. The most
common formulation of the problem is the 01 knapsack problem,
which restricts the number xj of copies of each kind of item to zero
or one.

Maximize f (x1, x2, . . ., xn) =
n∑

j=1

cjxj

Subject to g(x1, x2, . . ., xn) =
n∑

j=1

ajxj ≤ b,

xj ∈ {0, 1} j = 1, 2, . . ., n,

cj > 0, aj ≥ 0, b > 0.

(1)

∗ Corresponding author. Tel.: +91 3222 283734.
E-mail addresses: bhattacharjee.kaushik@gmail.com (K.K. Bhattacharjee),

spsarmah@iem.iitkgp.ernet.in, sp sarmah@yahoo.com (S.P. Sarmah).

The binary decision variables xj are used to indicate whether
item j is included in the knapsack or not. It may be assumed that
all profits and weights are positive, and that all weights are smaller
than the capacity b.

In recent times, many heuristic and meta-heuristic algorithms
have been employed to solve 01 knapsack problems: Zhao et al.
[5] proposed genetic algorithm to solve 01 knapsack problem.
Greedy strategy combining with traditional genetic algorithm
proved to be much more effective to handle difficult instances. Lin
[6] used genetic algorithm to solve knapsack problem with impre-
cise weight, and he investigated the possibility of using genetic
algorithms in solving the fuzzy knapsack problem without defin-
ing membership functions for each imprecise weight coefficient.
Liu and Liu [7] proposed a schema-guiding evolutionary algorithm
(SGEA) to solve 01 knapsack problems. Wanga et al. [8] proposed
quantum swarm evolutionary algorithm to solve 01 knapsack
problems. Shi [9] modified the parameters of the ant colony opti-
mization (ACO) model to adapt itself to 01 knapsack problems.
The improved ACO has strong capability of escaping from the local
optimum through artificial interference. Li and Li [10] proposed
a binary particle swarm optimization based on multi-mutation
strategy (MMBPSO) to solve knapsack problem. The MMBPSO can
effectively escape from the local optima to avoid premature conver-
gence due to the utilization of Multi-Mutation strategy. Zou et al.
[11] proposed a novel global harmony search algorithm to solve 01
knapsack problems. They utilized position updating and discrete
genetic mutation strategy to avoid the premature convergence.

Although many 01 knapsack problems have been solved suc-
cessfully by these algorithms, but some new and more difficult 01

http://dx.doi.org/10.1016/j.asoc.2014.02.010
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.02.010
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.02.010&domain=pdf
mailto:bhattacharjee.kaushik@gmail.com
mailto:spsarmah@iem.iitkgp.ernet.in
mailto:sp_sarmah@yahoo.com
dx.doi.org/10.1016/j.asoc.2014.02.010

K.K. Bhattacharjee, S.P. Sarmah / Applied Soft Computing 19 (2014) 252–263 253

knapsack problems hidden in the real world, so the research on
this particular issue is still important. Many algorithms provide
possible solutions for some 01 knapsack problems, but they may
lose their efficiency on solving these difficult problems due to their
own disadvantages and limitations. Most of these algorithm pro-
posed recently are effective for solving 01 knapsack problem with
very low dimension, but they may not be effective for 01 knapsack
problems with high dimensional sizes.

The shuffled frog leaping algorithm (SFLA) is a meta-heuristic
optimization method which is based on observing, imitating, and
modeling the behavior of a group of frogs when searching for the
location that has the maximum amount of available food [12]. SFLA,
originally developed by Eusuff and Lansey in 2003, can be used to
solve many complex optimization problems, which are nonlinear,
non-differentiable, and multi-modal [13]. SFLA has been success-
fully applied to several engineering optimization problems such as
water resource distribution [14], bridge deck repairs [15], job-shop
scheduling arrangement [16], multi-mode resource-constrained
project scheduling problem [17], unit commitment problem [18]
and traveling salesman problem (TSP) [19]. The most distinguished
benefit of SFLA is its fast convergence speed [20]. The SFLA com-
bines the benefits of both the genetic-based memetic algorithm
(MA) and the social behavior-based PSO algorithm [21].

2. Discrete shuffled frog leaping algorithm

In SFLA, the population consists of a set of frogs (solutions) that
is partitioned into subsets referred to as memeplexes. The differ-
ent memeplexes are considered as different cultures of frogs, each
performing a local search. Within each memeplex, the individ-
ual frogs hold ideas, that can be influenced by the ideas of other
frogs, and evolve through a process of memetic evolution. After
a defined number of memetic evolution steps, ideas are passed
among memeplexes in a shuffling process [22]. The local search and
the shuffling processes continue until defined convergence criteria
are satisfied [14].

An initial population of P frogs is created randomly. For S-
dimensional problems (S variables), a frog i is represented as
Xi = (xi1, xi2, . . ., xiS). Afterwards, the frogs are sorted in a descen-
ding order according to their fitness. Then, the entire population is
divided into m memeplexes, each containing n frogs (i.e. P = m × n).
In this process, the first frog goes to the first memeplex, the sec-
ond frog goes to the second memeplex, frog m goes to the mth
memeplex, and frog m + 1 goes back to the first memeplex, etc.

Within each memeplex, the frogs with the best and the worst
fitnesses are identified as Xb and Xw , respectively. Also, the frog with
the global best fitness is identified as Xg. Then, a process similar to
PSO is applied to improve only the frog with the worst fitness (not
all frogs) in each cycle. Accordingly, the position of the frog with
the worst fitness is adjusted as follows:

Di = Rand() × (Xb − Xw), (2)

where Di is the change in ith frog position and new position is given
by:

Xw(new) = Xw + Di,

−Dmax ≤ Di ≤ Dmax;
(3)

where Rand() is a random number(Rand() ∼ U(0, 1)); and Dmax is
the maximum allowed change in a frog’s position. If this process
produces a better solution, it replaces the worst frog. Otherwise,
the calculations in Eqs. (2) and (3) are repeated but with respect to
the global best frog (i.e. Xg replaces Xb). If no improvement possible
in this case, then a new solution is randomly generated to replace
that frog. The calculations then continue for a specific number of
iterations [14].

For handling integer programming problems the discrete ver-
sion of the SFLA is used, called discrete shuffled frog leaping
algorithm (DSFLA). The worst frog within each memeplex is
updated [12] according to

Di =
{

min{int[Rand × (Xb − Xw)], Dmax} for a positive step,

max{int[Rand × (Xb − Xw)], −Dmax} for a negative step;
Xw(new) = Xw + Di.

(4)

Like SFLA, DSFLA also follows same steps to replace the worst frog.
If Eq. (4) does not produce a better solution, then Xb is replaced by
the global best frog i.e. Xg; and if in this case also we replace the
worst frog by a new randomly generated solution, if Eq. (4) does
not produce a better solution. Accordingly, the main parameters
of DSFLA are: number of frogs P; number of memeplexes m; num-
ber of generation for each memeplex before shuffling n; number
of shuffling iterations it; and maximum number of iterations iMax.
The pseudocode for the DSFLA is given in Algorithm 1.

Algorithm 1. Pseudocode for a DSFLA procedure

Generate random population of P solutions (frogs)
for each individual i ∈ P do

calculate fitness(i)
end for
Sort the population P in descending order of their fitness
Divide P into m memeplexes
for each memeplex do

Determine the best and worst frogs
Improve the worst frog position using Eq. (4)
Repeat for a specific number of iterations

end for
Combine the evolved memeplexes
Sort the population P in descending order of their fitness
if termination = true then

Return best solution
end if

3. Modified DSFLA for 01 knapsack

01 knapsack problem cannot be handled directly by SFLA or
DSFLA because of its particular structure. For this reason origi-
nal DSFLA is modified and applied to solve 01 knapsack problems
as discussed below. Shuffled frog leaping algorithm has the most
advantageous property of fast convergence speed. But at the same
time it looses the searching capability of divergent field and some-
times trapped within a local optima. To make a balance between
the convergent and divergent property we further modified DSFLA
by hybridizing which include the genetic mutation property of
divergent category. The modified discrete shuffled frog leaping
algorithm (MDSFLA) is discussed in this section in full details.

3.1. Construction of individual frog

01 knapsack problem is an integer programming problem. There
are two possible values for the decision variable xj, zero or one.
The individual frog is represented by a n-bit binary string, where n
is the dimension of the problem. The initial population is created
randomly to achieve sufficient diversification.

3.2. Process for discrete variables

In this paper we have used three kinds of discretization to solve
the 01 knapsack problems.

Download English Version:

https://daneshyari.com/en/article/495568

Download Persian Version:

https://daneshyari.com/article/495568

Daneshyari.com

https://daneshyari.com/en/article/495568
https://daneshyari.com/article/495568
https://daneshyari.com

