
Journal of Information Security and Applications 35 (2017) 55–67 

Contents lists available at ScienceDirect 

Journal of Information Security and Applications 

journal homepage: www.elsevier.com/locate/jisa 

A software assignment algorithm for minimizing worm damage in 

networked systems 

Chu Huang 

a , Sencun Zhu 

b , Quanlong Guan 

c , ∗, Yongzhong He 

d 

a College of Information Science and Technology, The Penn State University, USA 
b Department of Computer Science and Engineering, The Penn State University, USA 
c Network and Education technology center, Jinan University, China 
d School of Computer and Information Technology, Beijing Jiaotong University, China 

a r t i c l e i n f o 

Article history: 

Available online 30 May 2017 

Keywords: 

Software diversity 

Heterogeneity 

Software assignment 

Graph coloring 

a b s t r a c t 

Homogeneous networked systems are at high risk of being compromised by malicious attacks that ex- 

ploit a single weakness common to all. Following the survivability through heterogeneity philosophy, we 

present a novel approach to improving survivability of networked systems via software diversity. In this 

work, we propose an algorithm for assigning a number of software packages over a network of systems 

in an intelligent way such that machines running identical software are isolated into small “islands”, 

hence restricting the worm-like attacks from propagation. While developing the algorithm, we take into 

consideration not only practical constraints, including host functionality and software availability, but also 

weight, severity and impact range of vulnerability, well balancing and effectively minimizing the potential 

damage by an single attack. We also introduce possible enhancements by taking advantage of topologi- 

cal features of the network. Finally, we present a comparative analysis of our algorithm using simulation 

over various network structures. The results not only confirm the effectiveness and scalability of our al- 

gorithm, but also show its capability in creating moving attack surface. The level of heterogeneity our 

algorithm can actually create depends on the ratio of the number of installed software to the total num- 

ber of available software. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the fast advancement of nowadays information technol- 

ogy, organizations are becoming ever more dependent on inter- 

connected systems for carrying out everyday tasks. However, the 

pervasive interdependence of such infrastructure increases the risk 

of being attacked and thus poses numerous challenges to system 

security. One major problem for such networked environments is 

software monoculture [36,51] – running on the risk of exposing 

a weakness that is common to all of its components, it facilitates 

the spread of attacks and enables large-scale compromises. Con- 

sidering the consequences of software monoculture in intensively 

connected systems, there is an urgent need to control the damage 

of such security compromises that take advantage of the connec- 

tivity of the networked system. 

In contrast to homogeneous systems by software monoculture, 

heterogeneous architectures are expected to have higher surviv- 

ability [45,59,62] . This point is very much like the maintenance 

∗ Corresponding author. 

E-mail address: gql@jnu.edu.cn (Q. Guan). 

of genetic and ecosystem diversity in biology. The variability in 

the biological world allows at least a portion of species to sur- 

vive an epidemic. Inspired by such phenomena of biodiversity, 

a good number of techniques have been proposed to improve 

system resilience and survivability under attacks. However, pre- 

vious approaches cannot fully meet two highly desired require- 

ments: (R1) Resistance against widespread security compromises 

in a networked environment; (R2) Practicability of the solutions 

under real-world constraints. To see how existing approaches are 

limited in meeting these two requirements, we classify them into 

three categories: software diversity at the system level, software 

diversity at network level and N-version programming. 1) Diver- 

sity at the system level is achieved mainly through randomization 

techniques, which are limited to individual machines and it is not 

clear if and how they can be extended to improve the survivability 

of the networked systems as a whole. 2) Diversification methods 

at the network level compensate the limitations of the former ap- 

proach, but they suffer from the problem of only considering single 

version assignment of software. In the real world scenarios, how- 

ever, a host (i.e., a commodity PC) typically is required to install 

with more than one software (i.e., operating system, web browser, 

http://dx.doi.org/10.1016/j.jisa.2017.05.004 

2214-2126/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.jisa.2017.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2017.05.004&domain=pdf
mailto:gql@jnu.edu.cn
http://dx.doi.org/10.1016/j.jisa.2017.05.004


56 C. Huang et al. / Journal of Information Security and Applications 35 (2017) 55–67 

email client, office suite applications etc.) to perform particular 

tasks. 3) N-version programming: achieves higher system surviv- 

ability depending on its underlying multiple-version software units 

that tolerate software faults. This method has very high computa- 

tional cost and is not practical enough to be used routinely in real- 

world organizations. 

In order to address the research gap, in our previous work 

[28] we proposed a method that utilizes diverse off-the-shelf soft- 

ware to create a heterogeneous environment for networked sys- 

tems against worm-like attacks. In practice, common vulnerabili- 

ties are generally a result of common code or shared specifications. 

Based on the fact that most of the off-the-shelf software are devel- 

oped independently by different groups of developers, they are un- 

likely to exhibit the same vulnerabilities [25] . Hence, by assigning 

different software packages to different systems in a network, it 

will increase the difficulty for an attacker to construct a spreading 

malware that exploits common vulnerabilities in the software. 

In this work, we present a new graph multi-coloring algorithm 

for assigning software packages to hosts in order to isolate worm- 

like attacks within a small “island. Different from [28] , we intro- 

duce the concept of severity of software and take into account a 

new dimension when performing the software assignment task. In 

reality vulnerabilities do not have equal impacts: A more severe 

vulnerability (e.g. gain root privilege) could result in a far more se- 

rious damage compared to a mild vulnerability (e.g. collect some 

types of user information). Assessing damage of the vulnerabilities 

and distributing it accordingly is beneficial for avoiding dispropor- 

tionately large damage in the network. Therefore, in this work, we 

want to take a step further and propose an algorithm that is able 

to minimize the potential damaging impacts of the vulnerable clus- 

ters. Such impacts can more accurately reflect the ability of the at- 

tacker to compromise the networked system, rather than just the 

sizes of the clusters. Besides, we explore topological features of the 

network structure and show that by leveraging network topological 

features, our algorithm can further reduce the potential damage of 

the network resulted from a single attack. 

Specifically, we make the following contributions. 

• First, we model the software assignment problem as a graph 

multi-coloring problem with practical system requirements and 

constraints, and take into account of different severity impacts 

of vulnerabilities. We also design an efficient heuristic algo- 

rithm to compute a near optimal solution for our problem. 

• Second, based on the proposed algorithm, we introduce two 

possible enhancements by taking advantage of topological fea- 

tures of the network structure. Interesting question answered 

include: How will the critical nodes of a network be identified and 

influence the assignment solution? 

• Third, to understand what kinds of network structures facilitate 

diversity, we evaluate the algorithm on different graph topolo- 

gies. Through experiments, we find that the level of hetero- 

geneity in our algorithm depends on the ratio of the number 

of software installed to the total number of available software, 

and we also identify critical ratio points for different represen- 

tative topologies. Our findings may give some practical guide- 

lines for choosing appropriate system parameters for balancing 

the trade-off between survivability and the assignment cost. 

The rest of the paper is organized as follows. Section 2 reviews 

major studies on software diversity in different dimensions and 

other related works on graph coloring. Section 3 illustrates how 

to model the software assigning task as a graph coloring problem. 

Section 4 introduce the software assigning algorithm in detail and 

propose two improving schemes that utilize the topological fea- 

tures of the network. Section 5 evaluates the performance of our 

software assigning strategies. Section 6 gives extensive discussions 

of related issues. Finally, Section 7 concludes our work and pro- 

vides future research directions. 

2. Related work 

The state-of-the-art approaches on software diversity are clas- 

sified into three main categories: diversity at the system level and 

the network level, and N-version programming. 

Software diversity at the system level has been focused on ad- 

dress space layout randomization, instruction set randomization 

and data randomization. Address space layout randomization (ASLR), 

as a very successful technique [35,52] , randomizes the base ad- 

dress of each program region: heap, code and stack. It has al- 

ready been implemented in major operating systems [56] , includ- 

ing OpenBSD, Linux, Windows, MacOS, Android and iOS. In [8] , a 

leakage-resilient layout randomization for mobile and embedded 

devices was prposed. Another randomization technique for soft- 

ware transformation is the instruction set randomization (ISR). Por- 

tokalidis and Keromytis [34] proposed to obfuscate underlying sys- 

tem’s instructions in order to defeat code-injection attacks. Their 

proposed method randomizes all binaries with different secret keys 

so that malicious code introduced by the attackers would fail 

to execute correctly. Data randomization is another randomized- 

based approach. By applying different random masks on data in 

the memory [11] , it disrupts the attempt to write outside objects 

on the memory since attackers cannot determine memory regions 

that are associated with particular objects. Cowan et al. [15] pre- 

sented an approach that randomizes stored pointer values, as op- 

posed to the locations where objects are stored. The encryption is 

achieved by XORing pointer values with a random integer mask. 

These works rely on attackers’ inability to guess a secret key for 

security. It is not clear whether software transformation of individ- 

ual machines would lead to overall diversification of the networked 

system as a whole. 

The idea of just-in-time compilation randomization has been 

studied by Homescu et al. [27] . Their approach neither creates di- 

verse versions of the same program nor introduces randomization 

points: the randomization happens in the just-in-time compiler di- 

rectly. In [38] , Liu et al. explored a hardware-level approach at 

micro instruction level and presented a diversification technique 

that remaps machine code of the same ISA into multiple variants 

based on programmable decoder. In [37] , the authors systemati- 

cally studied the state-of-the-art in system-level software diversity 

and highlighted fundamental trade-offs between fully automated 

approaches. 

Diversity at the network level is achieved by using differ- 

ent applications, operating systems, and communication protocols 

[21,62] within a networked system. Mont et al. [40] introduced 

an approach to ensuring diversity for common, widespread soft- 

ware applications in which diversity is enforced at the installation 

time by a random selection and deployment of critical software 

components. Hiltunen et al. [26] proposed the use of fine-grained 

customization and dynamic adaptation as the key enabling tech- 

nologies to achieve the goal of survivable system design. O’Donnell 

and Sethu [45] presented several distributed algorithms for as- 

signing different versions of software to individual systems. How- 

ever, their algorithms require high communication overhead when 

negotiating colors among the nodes. Yang et al. [59] highlighted 

the same diversity idea and applied it in the sensor networks 

with limited choices of software versions. The work was later ex- 

tended in [60] by allowing each sensor node to be pre-loaded with 

more than one diversitified version of the same software. However, 

the effectiveness of these approaches on complex networks is still 

vague. Moveover, the works in [45,59,60] only address the problem 

of assigning multiple versions of a single software package. In re- 

ality, every machine is installed with many software packages and 



Download English Version:

https://daneshyari.com/en/article/4955689

Download Persian Version:

https://daneshyari.com/article/4955689

Daneshyari.com

https://daneshyari.com/en/article/4955689
https://daneshyari.com/article/4955689
https://daneshyari.com

