
The Journal of Systems and Software 135 (2018) 1–16

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Managing architectural technical debt: A unified model and systematic

literature review

Terese Besker ∗, Antonio Martini, Jan Bosch

Computer Science and Engineering, Software Engineering, Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

Article history:

Received 20 December 2016

Revised 21 September 2017

Accepted 25 September 2017

Available online 28 September 2017

Keywords:

Systematic literature review

Architectural technical debt

Software maintenance

Software architecture

a b s t r a c t

Large Software Companies need to support the continuous and fast delivery of customer value in both the

short and long term. However, this can be impeded if the evolution and maintenance of existing systems

is hampered by what has been recently termed Technical Debt (TD). Specifically, Architectural TD has re-

ceived increased attention in the last few years due to its significant impact on system success and, left

unchecked, it can cause expensive repercussions. It is therefore important to understand the underlying

factors of architectural TD. With this as background, there is a need for a descriptive model to illustrate

and explain different architectural TD issues. The aim of this study is to synthesize and compile research

effort s with the goal of creating new knowledge with a specific interest in the architectural TD field. The

contribution of this paper is the presentation of a novel descriptive model, providing a comprehensive

interpretation of the architectural TD phenomenon. This model categorizes the main characteristics of

architectural TD and reveals their relations. The results show that, by using this model, different stake-

holders could increase the system’s success rate, and lower the rate of negative consequences, by raising

awareness about architectural TD.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In 1992, Cunningham (1992) introduced the financial metaphor

of Technical Debt (TD) to describe the need for recognizing the

potential long-term and far-reaching negative effects of immature

code, made during the software development lifecycle, which has

to be repaid with interest in the long term. Cunningham used the

financial terms of debt and interest when describing TD: “Shipping

first-time code is like going into debt. A little debt speeds development

so long as it is paid back promptly with a rewrite. Objects make the

cost of this transaction tolerable. The danger occurs when the debt is

not repaid. Every minute spent on not-quite-right code counts as in-

terest on that debt. ” Another, more recent, definition was provided

by Avgeriou et al. (2016b) who define TD as “In software-intensive

systems, technical debt is a collection of design or implementation

constructs that are expedient in the short term, but set up a tech-

nical context that can make future changes more costly or impossible.

Technical debt presents an actual or contingent liability whose impact

is limited to internal system qualities, primarily maintainability and

evolvability.”

∗ Corresponding author.

E-mail addresses: besker@chalmers.se (T. Besker), antonio.martini@chalmers.se

(A. Martini), jan@janbosch.com (J. Bosch).

Today, large-scale software companies strive to increase their

efficiency in each lifecycle phase, by reducing time and resources

deployed by the development teams. To achieve this goal of deliv-

ering high-quality systems, the software architecture is especially

important and should contribute to a minimal maintenance effort.

Van Vliet (2008) states that maintenance activities consume 50–

70% of the total effort spent during a typical software project. Left

unchecked, these maintenance activities can make the architecture

diverge towards a suboptimal state, and, in the worst-case sce-

nario, towards system obsolescence or crisis (Martini et al., 2014).

During the development of large-scale systems, software archi-

tecture plays a significant important role (Kruchten et al., 2012)

and consequently a vital part of the overall TD relates to sub-

optimal architectural decisions and is regarded as Architectural

Technical Debt (ATD) (Besker et al., 2017a; Martini and Bosch,

2015a). ATD is primarily incurred by architectural decisions with

the consequence of immature architectural artifacts and compro-

mised quality attributes (Besker et al., 2017b). ATD commonly

refers to violations of best practices (Martini et al., 2014), con-

sistency and integrity constraints of the architectures, or the im-

plementation of immature architecture techniques. These con-

sequences primarily result from the compromise of modularity,

reusability, analyzability, modifiability, testability, or evolvability

during software architecting (Li et al., 2016). ATD does not al-

ways receive the full attention from the architect and management

https://doi.org/10.1016/j.jss.2017.09.025

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.09.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.09.025&domain=pdf
mailto:besker@chalmers.se
mailto:antonio.martini@chalmers.se
mailto:jan@janbosch.com
https://doi.org/10.1016/j.jss.2017.09.025

2 T. Besker et al. / The Journal of Systems and Software 135 (2018) 1–16

teams due to the fact that ATD typically concerns the cost of the

long-term maintenance and evolution of a software system instead

of the visible short-term business value. Another reason for this

is that ATD is hard to identify and measure since it is not eas-

ily visible (Kruchten, 2012) within the code base. The visibility of

ATD, generally first occurs when the system significantly reveals

shortcomings or complications in the maintenance or operation

(Li et al., 2014a).

TD management involves navigating a path that considers both

value and cost, to focus on overall ROI over the software lifecycle

(Nord et al., 2012) for all different types of TD, and, although a

great deal of theoretical work on the architectural aspects of TD

has recently been produced, practical ATD Management (ATDM),

with an architectural focus, lacks empirical studies (Martini et al.,

2016a).

ATD is evidently detrimental to software companies, and, since

ATD has such a significant negative impact on software systems

(Besker et al., 2017b; 2017a), it is important to understand what

it is and of what it is composed. This study focuses on differ-

ent ATD categories and their related effects, and thereby becomes

highly relevant when providing a platform for analyzing different

ATDM strategies, solutions and challenges. To date, we have not

found any studies describing this issue in a unified way, which

could facilitate the challenges of understanding and managing ATD

in an overall context. Research can benefit from research synthe-

sis techniques that help summarize and assess the body of results

accumulating in the literature (Zimmermann, 2016). Therefore, to

explore and understand these concerns in a more comprehensive

context, a systematic literature review is conducted in the area of

ATD, with research questions focusing on the current knowledge

regarding debt, interest, principal and existing challenges, and so-

lutions in managing ATD.

This unified model and literature review can be of benefit from

a variety of academic perspectives. For researchers interested in

the architectural aspects of TD, the research agenda for ATD helps

to build upon already existing work and guide effort s towards new

research directions. For practitioners, the unified model can help

to identify ATD and to evaluate what problems might occur while

dealing with ATD and the consequences if these challenges are left

unattended.

The objective of this study has been achieved through em-

ploying a thorough Systematic Literature Review (SLR) research

method (Kitchenham et al., 2009). SLR is a well-established re-

search method for conducting a structured and systematic way of

performing a review using a protocol by formally defining each

process within the review process.

The main objective of this study is to clarify and contribute to

an extended knowledge base in the research area of ATD and to

create a common platform for future research. The contributions

of this study are as follows:

1. We present results showing that there is no one unified and

overarching description or interpretation for ATD and, therefore,

a ‘state-of-the-art’ review of significant issues is provided, con-

cerning various ATD issues.

2. This study identifies aspects of previous studies, and examines

how the studies have been conducted.

3. This study provides a novel descriptive model that provides an

overall understanding concerning knowledge currently of inter-

est in the research area of ATD. This unified descriptive model

can support the process of more informed management of the

software development lifecycle, with the goal of raising the sys-

tem’s success rate and lowering the rate of negative conse-

quences for both the academic and practitioner community.

4. Having this visual and unified model in which stakeholders can

rapidly obtain a holistic overview is valuable. Researchers and

practitioners can use this unified model to evaluate and under-

stand what problems might occur while dealing with ATD and

the consequences if these challenges are left unattended. In our

unified model, we provide a checklist of the aspects of ATD re-

ported in the literature. Researchers and practitioners can use

this checklist as a general reference tool for recognizing ATD.

5. This study shows that there is a compelling need for supporting

tools and methods for system monitoring and evaluating ATD,

but also shows that no software tools covering the full spec-

trum of ATD are yet available.

6. This study provides new insights into the refactoring of ATD

research by showing that practitioners, in general, lack strate-

gies for architectural refactoring, and, therefore, such an activity

might result in an ad-hoc process where the results are inade-

quate. In this paper, we provide the key dimensions that need

to be taken into consideration when defining such a refactoring

strategy.

7. To both practitioners and academics, this study demonstrates

the relevance of paying more attention and effort to remediat-

ing ATD during the software lifecycle, in order to decrease the

level of negative impact due to ATD on daily software develop-

ment work.

This paper is structured in nine sections. The following section

introduces background information that is used during a discussion

of the results. In the third section, the SLR method is described.

The fourth section presents the results from the retrieval of publi-

cations, and section five presents the results of the data collection

of the publications. Section six addresses the importance of ATD

and the need for a unified model. Section seven discusses the re-

sults of both the literature review and the unified model and ana-

lyzes the results of an ATD research agenda and lists the threats to

the validity. Section eight reviews the related research, while the

last section, nine, concludes the paper.

This paper is an extension of the previously published pa-

per that was originally published at the 42nd Euromicro Confer-

ence on Software Engineering and Advanced Applications (SEAA)

in 2016 (Besker et al., 2016). However, this paper includes several

more surveyed publications, since the timeframe when searching

for publications was expanded to also include the year 2016. We

have also added both a forward and backward snowballing tech-

nique for this extra time period. This paper also includes an ad-

ditional research question, and, consequently, new findings, and a

more in-depth analysis of all of the research questions has been

obtained. Moreover, the unified model offered is an extention of

the previous model presented in the abovementioned conference

paper (Besker et al., 2016), where the model has been enhanced by

including additional research question (importance of ATD - RQ1)

and updated research results for all of the different aspects in the

model.

2. Background

In order to provide the reader with the necessary information

that is needed to better understand the remainder of the paper,

this section provides a background to the ATD domain. In this

broad view, we examine what constitutes ATD in terms of debt, in-

terest, and principal and how it is managed with regard to related

management processes, current challenges and analyzing support.

There are different types of TD, with Alves et al. (2014) hav-

ing identified and organized the different types by considering the

nature as a classification criterion for each TD type. They iden-

tified 13 different types of TD, including Architectural TD, Build

Debt, Infrastructure TD, Requirement TD, Test Automation TD, and

Code TD. Alves et al. define ATD as referring “to the problems en-

countered in project architecture, for example, violation of modularity,

Download English Version:

https://daneshyari.com/en/article/4956316

Download Persian Version:

https://daneshyari.com/article/4956316

Daneshyari.com

https://daneshyari.com/en/article/4956316
https://daneshyari.com/article/4956316
https://daneshyari.com

