
The Journal of Systems and Software 135 (2018) 37–54

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On the value of a prioritization scheme for resolving Self-admitted

technical debt

Solomon Mensah

a , ∗, Jacky Keung

a , Jeffery Svajlenko

b , Kwabena Ebo Bennin

a , Qing Mi a

a Department of Computer Science, City University of Hong Kong, Hong Kong, China
b Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

a r t i c l e i n f o

Article history:

Received 12 February 2017

Revised 16 August 2017

Accepted 25 September 2017

Available online 28 September 2017

Keywords:

Self-admitted technical debt

Prioritization scheme

Textual indicators

Source code comment

Open source projects

a b s t r a c t

Programmers tend to leave incomplete, temporary workarounds and buggy codes that require rework in

software development and such pitfall is referred to as Self-admitted Technical Debt (SATD). Previous

studies have shown that SATD negatively affects software project and incurs high maintenance over-

heads. In this study, we introduce a prioritization scheme comprising mainly of identification, exami-

nation and rework effort estimation of prioritized tasks in order to make a final decision prior to soft-

ware release. Using the proposed prioritization scheme, we perform an exploratory analysis on four open

source projects to investigate how SATD can be minimized. Four prominent causes of SATD are identified,

namely code smells (23.2%), complicated and complex tasks (22.0%), inadequate code testing (21.2%) and

unexpected code performance (17.4%). Results show that, among all the types of SATD, design debts on

average are highly prone to software bugs across the four projects analysed. Our findings show that a

rework effort of approximately 10 to 25 commented LOC per SATD source file is needed to address the

highly prioritized SATD (vital few) tasks. The proposed prioritization scheme is a novel technique that will

aid in decision making prior to software release in an attempt to minimize high maintenance overheads.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The concept of technical debt, first introduced by Cunningham

(1993) , refers to the debt incurred through the speeding up

of software project development which results in a number of

deficiencies ending up in high maintenance overheads. These

deficient and imperfect traits in the software development prior

to project release will have to be paid in the near future as an

uncontrolled maintenance cost. The technical debt metaphor, a

major issue in software development and maintenance, negatively

affects software quality and has recently been a focus for several

research studies (Potdar and Shihab, 2014, Bavota and Russo, 2016,

Ramasubbu, 2013, Fernandez-Sanchez et al., 2015, Kruchten et al.,

2012, Maldonado and Shihab, 2015, Wehaibi et al., 2016, Mensah

et al., 2016).

With the increasing pressure of expediting software products

for users, project managers obliged to meet stipulated deadlines

and short-term business benefits, tend to impose pressure on their

programmers. As a result, these programmers commit incomplete

codes, buggy codes and temporary fixes that produce errors and

∗ Corresponding author.

E-mail addresses: smensah2-c@my.cityu.edu.hk (S. Mensah), Jacky.Keung@

cityu.edu.hk (J. Keung), jeff.svajlenko@usask.ca (J. Svajlenko), kebennin2-

c@my.cityu.edu.hk (K.E. Bennin), Qing.Mi@my.cityu.edu.hk (Q. Mi).

require rework so as to meet the need of customers who demand

quality and robust applications. These errors are assumed as in-

tentional mistakes by the software development team. Potdar and

Shihab (2014) describe this phenomenon of intentional weak

software development process resulting in series of long-term

overheads in the maintenance phase as Self-admitted Technical

Debt (SATD). Thus, SATD refers to the incomplete or temporary

fixes which are intentionally committed by developers and admit-

ted as mistakes during software development. The SATD metaphor

is gradually becoming a research focus (Potdar and Shihab, 2014,

Bavota and Russo, 2016, Maldonado and Shihab, 2015, Wehaibi

et al., 2016) whereby researchers aim at finding solutions for com-

bating or minimizing the developers’ misconducts and shortcuts

of producing less quality applications. This misconduct in develop-

ment is sometimes based on decisions that prioritize functionality

over quality (Fernandez-Sanchez et al., 2015) and goes a long way

to negatively affect software maintenance (Zazworka et al., 2011).

A plethora of prior studies Zimmermann et al. (2008) and

Fluri et al. (2007) conducted in recent years focused on software

quality issues in relation to software bugs introduced by devel-

opers and assumed such bugs as mistakes. However, very little

is known about the proportion of different kinds of SATD in a

software project. Knowledge of the proportion could help software

practitioners prioritize their scarce testing resources. A potential

way of determining the proportions is by examining the source

https://doi.org/10.1016/j.jss.2017.09.026

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.09.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.09.026&domain=pdf
mailto:smensah2-c@my.cityu.edu.hk
mailto:Jacky.Keung@cityu.edu.hk
mailto:jeff.svajlenko@usask.ca
mailto:kebennin2-c@my.cityu.edu.hk
mailto:Qing.Mi@my.cityu.edu.hk
https://doi.org/10.1016/j.jss.2017.09.026

38 S. Mensah et al. / The Journal of Systems and Software 135 (2018) 37–54

code comments of the software project. Software comments

(auxiliary segments which are not compiled) play a key role in

understanding the source codes in relation to software develop-

ment and maintenance. Inspired by previous works by Potdar and

Shihab (2014) and Fluri et al. (2007) , we perform an exploratory

study on source code comments of open source projects whereby

SATD tasks are prioritized to know the extent of its negative

effects on software quality. According to Devroey et al. (2013) ,

prioritization can be used to sort items and optimize coverage

criteria or assign weights to features. Prioritization of technical

debt items is an important activity in the software engineering

domain since it balances short-term product release and long-term

effects associated with the software release (Martini et al., 2014).

According to Li et al. (2015) , there is the need for more studies to

be conducted on how to prioritize technical debt task list in order

to maximize profit.

In the attempt to deal with the prioritization of the SATD

metaphor, we introduce a 6-step prioritization scheme to provide

a framework for minimizing SATD based on identified textual

indicators by Potdar and Shihab (2014) . We construct a text min-

ing algorithm to mine indicative source code comments of SATD

from four large open source software projects. Thus, we make use

of extracted source code comments and empirically investigate

the causes of SATD and estimate the rework effort involved in

addressing them. We empirically validate the proposed prioriti-

zation approach on four open source projects using Recall and

Precision accuracy measures. We further perform statistical tests

using the Welch’s t-test and Cliff’s δ effect size as recommended

by Kitchenham et al. (2016) to confirm the statistical significance

of our results.

Results from this study show that about 30–38% of the identi-

fied SATD tasks were major tasks which on average developers face

difficulty in addressing prior to software release. This resulted in a

rework effort estimation of approximately 10–25 commented LOC

per SATD source file needed to address highly prioritized SATD or

vital few tasks. Finally, seven distinct causes of SATD were found

with code smells, complex tasks, inadequate code testing and un-

expected code performance being the most dominant causes. The

prioritization scheme can form a decision-making baseline prior to

software release to assist software engineers in minimizing SATD

and its related impacts during software development.

Main contributions of this study include:

• a prioritization scheme for addressing SATD tasks.
• a text mining algorithm for SATD detection and prioritization.
• a rework effort estimation of prioritized SATD tasks.

The remaining sections of the paper are organized as follows.

Section 2 presents reviews of related work. Section 3 presents

details of the 6-step prioritization scheme as well as the

methodological procedure employed in conducting the study.

Section 4 discusses the results from the empirical analysis of the

study. Section 5 presents the threats to validity and Section 6 gives

the conclusions and future direction of the study.

2. Related work

Several works have been done in the field of technical debt

in general (Ramasubbu, 2013, Li et al., 2015, Farias et al., 2015,

Kruchten et al., 2012, Martini et al., 2014). Farias et al. (2015) per-

formed an exploratory analysis on two large open source projects

to identify technical debts through source code comment anal-

ysis. They proposed a model, namely CVM-TD which provides a

vocabulary that can be used to detect technical debts. Results

from their study indicate that developers use dimensions con-

sidered by CVM-TD model to assist them in writing source code

comments during development. They concluded from their study

that technical debts can be identified from source code comment

analysis. Ramasubbu (2013) developed and validated the theory

of accumulation of technical debt that measures the impact of

tradeoffs between customer satisfaction and software quality. Their

study was performed using a commercial software product at the

various stages of the product’s lifecycle. Their proposed theory

provides relevant cost estimation and benefits of technical debt

for the adoption of a commercial software product.

In relation to our study, we focused on technical debts which

are self-admitted by the development team. The concept of SATD

was introduced by Potdar and Shihab (2014) who performed an

exploratory study on four large open source projects to study the

amount, reason and likelihood of removing SATD after its introduc-

tion during software development. In their study, they manually

examined the open source code comments and found 62 textual

indicators for identifying SATD. Out of the 2.4–31% of source files

that contained SATD, most of them were introduced by more ex-

perienced developers as compared to less experienced developers.

They also found that time and code complexities do not correlate

with the amount of SATD. Lastly, they found that even though

these SATD are meant to be eliminated after its introduction,

close to 30% were not addressed or removed from the software

projects analysed. A follow-up study by Maldonado and Shihab

(2015) identified and quantified SATD from at least 33,0 0 0 source

code comments into five main types, namely requirement debt,

design debt, test debt, defect debt and documentation debt. They

found that design debts were the most common type of debt form-

ing about 42–84% of the detected SATD comments. Another study

by Wehaibi et al. (2016) examined the impact of SATD on software

quality. They found that changes made on SATD tasks induced

less defects in future as compared to non-SATD tasks and that

these changes are more complex to be made. Bavota and Russo

(2016) recently conducted a differentiated replication (Wohlin et al.,

2012) study of Potdar and Shihab’s work to investigate the diffu-

sion rate of SATD in software development. In their study, they

(Bavota and Russo, 2016) mined over 2 billion source code com-

ments of 159 Java open source projects and identified an average of

51 SATD instances per each project. In their manual categorization

of SATD inspired by the Grounded theory principles (Corbin and

Strauss, 1990), they found that 30% of the SATD instances was

code debt, 20% represented requirement and defect debts, and 13%

represented design debt. They also found that the number of SATD

instances increases with the change history, and in most cases

(63%) the same developers who introduced the debt were the same

fixing the debt. Another recent study by Mensah et al. (2016) esti-

mated the rework effort needed to address the SATD tasks in open

source projects. Result from the study shows that, a rework effort

of approximately 13–32 commented LOC is required to address the

SATD tasks in each source file of the software projects analysed.

Even though this study makes use of source code comment

analysis as done in previous studies (Potdar and Shihab, 2014,

Bavota and Russo, 2016, Wehaibi et al., 2016, Maldonado and

Shihab, 2015, Farias et al., 2015, Mensah et al., 2016), it is unique

since we contribute with a 6-step prioritization scheme and a text

mining algorithm for prioritizing SATD tasks (or vital few tasks).

Thus, the text mining approach does not only detect SATD tasks as

demonstrated in a previous study (Farias et al., 2015) but also pri-

oritize the identified debts based on the prioritization scheme and

estimates the rework effort needed with the sole aim of assisting

in efficient decision making prior to software release. Again, whilst

manual exploration of SATD was performed in previous studies

(Potdar and Shihab, 2014, Bavota and Russo, 2016, Maldonado and

Shihab, 2015, Wehaibi et al., 2016), we automate the process by

introducing a text mining algorithm for SATD analysis. It should be

noted that, this study makes use of an effort estimation metric in

our recent work (Mensah et al., 2016) to estimate the rework ef-

Download English Version:

https://daneshyari.com/en/article/4956317

Download Persian Version:

https://daneshyari.com/article/4956317

Daneshyari.com

https://daneshyari.com/en/article/4956317
https://daneshyari.com/article/4956317
https://daneshyari.com

