
The Journal of Systems and Software 134 (2017) 12–28

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Self-organizing multi-agent systems for the control of complex

systems

Jérémy Boes ∗, Frédéric Migeon

IRIT, University of Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9, France

a r t i c l e i n f o

Article history:

Received 30 September 2016

Revised 28 June 2017

Accepted 18 August 2017

Available online 30 August 2017

Keywords:

Multi-Agent systems

Control

Self-organization

Complex systems

Internal combustion engines

a b s t r a c t

Because of the law of requisite variety, designing a controller for complex systems implies designing a

complex system. In software engineering, usual top-down approaches become inadequate to design such

systems. The Adaptive Multi-Agent Systems (AMAS) approach relies on the cooperative self-organization

of autonomous micro-level agents to tackle macro-level complexity. This bottom-up approach provides

adaptive, scalable, and robust systems. This paper presents a complex system controller that has been

designed following this approach, and shows results obtained with the automatic tuning of a real internal

combustion engine.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Controlling a system means being able to perform the adequate

modifications on its inputs in order to set the outputs on a de-

sired state. Over the course of History, humans made tremendous

efforts to control systems that are more and more complex: non-

linear, dynamic, noisy, with a large number of inputs and outputs,

and so on. Yet, the law of requisite variety (Ashby, 1956) implies

that the complexity of a controller has to be greater than or equal

to the complexity of the target system. Thus, the design of a con-

troller involves the design of a complex system. This is a challenge

for engineering.

Complexity is often tackled a posteriori, to study existing sys-

tems. On the contrary, methods enabling the design of complex

systems that meet strict requirements are quite rare. The main

feature of a complex system is that its behavior can not be eas-

ily predicted (Heylighen, 2008). Usual design methods, for in-

stance in software engineering, seek to a priori eliminate any un-

expected event. The design process must ensure that everything

will be smooth at runtime. But, as any other complex system, com-

plex programs sometimes have unexpected, unpredictable behav-

iors, and these classical methods fail.

For instance, in the field of system control, the usual methods

in the industry rely on the construction of a fine mathematical

model of the target system, that is later used to compute the com-

∗ Corresponding author.

E-mail addresses: boes@irit.fr (J. Boes), migeon@irit.fr (F. Migeon).

mands to perform, given some set points. The cost and difficulty of

the construction (and the tuning) of a mathematical model is high.

An often used alternative is machine learning. Giving the ability to

learn to a controller enables it to learn the behavior of the tar-

get system and build a model from data. However, this method

shows its limits when used with complex systems. Nonlinearities

in the learnt model lead to overcostly or impossible computations

in the control system. Another possibility exists: directly learning

the adequate commands, instead of a model that will later lead to

the said commands. We then focus only on the inputs and out-

puts of the controlled system, without trying to decipher its inter-

nal mechanisms.

Another difficulty is scalability. While various control methods

exist, they (almost) all fail to scale when a large number of inputs

and outputs are involved. Most advanced solutions rely on the dis-

tribution of the control. Instead of letting a central controller han-

dle all the inputs, each input is controlled by one local controller,

and all controllers try to cooperate to control the whole system.

Multi-Agent Systems (MASs), composed of autonomous entities,

are naturally distributed. They can be very useful to the problem of

the control of complex systems, for instance with multi-objective

optimization (Khamis and Gomaa, 2014). Moreover, they bring in-

novative design methods. In particular, Adaptive Multi-Agent Sys-

tems (AMASs) are designed to be able to self-adapt at runtime to

any unexpected event. Instead of wasting time trying to cope with

any possible event during the design phase, we let the system deal

with the unexpected at runtime. Driven by cooperation principles,

agents self-organize locally to produce and maintain the desired

global function.

http://dx.doi.org/10.1016/j.jss.2017.08.038

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.08.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.08.038&domain=pdf
mailto:boes@irit.fr
mailto:migeon@irit.fr
http://dx.doi.org/10.1016/j.jss.2017.08.038

J. Boes, F. Migeon / The Journal of Systems and Software 134 (2017) 12–28 13

This paper presents experimental results obtained with an

AMAS designed to control complex systems, and applied to the

calibration of real heat engines. This system is fully described in

English for the first time in this paper. Able to learn and control

simultaneously, it provides a generic and robust solution to the

problem of control. It is a good example of the ability of AMASs

to be efficient in real life conditions.

Section 2 gives a quick background on control. Section 3 intro-

duces our approach and Section 4 presents our system. Results, ob-

tained in simulated as well as in real conditions, are showed in

Section 5 . Section 6 concludes with our perspectives.

2. Related works

Our work is at the crossroad of the fields of complex systems,

control, and machine learning. It is inspired by the ideas of Edgar

Morin on complexity (Morin, 2008), which we apply here to the

design of self-adaptive control systems.

2.1. Complex systems

The notion of complexity reflects the difficulty to analyze a

system and to forecast its behavior. Nonlinearities, inner feedback

loops, large number of inputs/outputs/inner parts, uncertainty on

the measures, and unpredictable behaviors are some of the re-

curring features of complex systems. However, there is no com-

mon agreement on a definition. For instance, Kolmogorov defines

the complexity of a string as the length of the shortest descrip-

tion of said string (Kolmogorov, 1998). While it is largely accepted,

this measure implies that a purely random string is of maxi-

mal complexity, as it can only be described by its full enumera-

tion. However this contradicts one of the key features of complex-

ity: it is situated somewhere between total order and total chaos

(Heylighen, 2008). Moreover, a complex system is dynamic, it is

able to spontaneously change its state. It is important not to ne-

glect this aspect during the analysis or the design of a system.

Measures such as Kolmogorov complexity give too much attention

to static, structural features of systems, and not enough to their dy-

namics. To this end, dynamical depth is based on the idea that the

degree of complexity of a system is not given by its part and their

causal relations, but by the imbrication of the different dynamics

that drive its behavior (Deacon and Koutroufinis, 2014).

Furthermore, the general system theory states that the classical

analytical approach can only be applied on systems whose parts

are linear and share negligible interactions (Von Bertalanffy, 1968).

This lets a lot of systems out of its scope, in particular complex

systems. We need to follow a different approach than the reduc-

tionist top-down analysis for complex systems control as well as

for complex systems design. The Adaptive Multi-Agent Systems

theory is being developed in this regard.

2.2. Control

Control approaches also find their limits when faced with com-

plexity. Artificial Intelligence (AI), and in particular machine learn-

ing, are used to overcome these limits.

The objective with AI in control is to automatically learn either

the model of the target system, the tuning of the model, the cali-

bration of the controller, or directly control laws from observations.

For instance, Jesus and Barbosa (2013) uses a genetic algorithm to

learn the optimal tuning of PIDs. This approach gives excellent re-

sults but needs a large number of iterations. Moreover, if the be-

havior of the controlled system changes over time (for instance,

because of mechanical wear), the tuning must be entirely redone,

it is not adaptive.

The biggest difficulty of dual control is to find the correct bal-

ance between probe actions and control actions. A way to do this is

to use neural networks to learn this balance from data (Fabri and

Bugeja, 2013). This approach is limited to control affine systems,

i.e. systems that reacts linearly to modifications on their inputs.

The most promising approach for scaling up, i.e. for control-

ling a large number of inputs with many criteria on many out-

puts, is to distribute the control. For instance, Bull et al. (2004) and

Choy et al. (2006) control road traffic junction signals on several

crossroads. In these approaches, there is no central controller that

handles all the traffic junctions, each crossroad is controlled by a

local controller. Bull et al. (2004) uses learning classifier systems,

while Choy et al. (2006) uses a combination of neural networks,

genetic algorithms and fuzzy logic. They obtained very interesting

results, but the difficulty to instantiate their approaches to real life

problems is a severe drawback.

Our approach uses feedback loops to learn not the model of the

controlled system but the control laws themselves, and distributes

a controller on each controlled input. Inner feedback loops ensure

an adequate balance between exploration and exploitation of the

model.

2.3. Machine learning

A program learns when it is able to improve its functional-

ity using its experience, i.e. data acquired during its execution

(Mitchell, 2006). Machine learning has been heavily influence by

the way we think the human mind works. The two well-known

methods for machine learning are supervised learning and unsu-

pervised learning, whether examples of the expected results are

presented to the learning program or not. However, this distinc-

tion is merely technical and does not allow to highlight the funda-

mental differences between machine learning algorithms. We pre-

fer the following five categories: Behaviorism, Cognitivism, Connec-

tivism, Evolutionism, and Constructivism.

Behaviorism considers the learner as a black-box. Learning oc-

curs when the observed behavior changes in response to the dy-

namics of the environment. In machine learning, the behavior is

then a product of the initial state of the program and its progres-

sive conditioning by its environment through a feedback loop. Re-

inforcement learning can be considered as a behviourist machine

learning approach. It is notably popular in robotics (Kober et al.,

2013). Its most well-known algorithm is Q-Learning (Watkins and

Dayan, 1992).

On the contrary, cognitivists consider that what is important is

not what the learner does but what he knows. Cognitivist machine

learning algorithms classically rely on symbol manipulation, and

thus on a predefined set of symbols, which is not adequate when

dealing with complexity (Raghavan et al., 2016).

Connectionism considers learning at a lower level in the brain:

the dynamic interconnection of neurons. In machine learning,

it regroups all the artificial neural network algorithms, from

back-propagation perceptrons to the more recent Kohonen maps

(Astudillo and Oommen, 2014) and deep learning algorithms

(Deng and Yu, 2014). They show impressive results but need a huge

amount of data and computing power.

Evolutionism considers learning at the scale of a species rather

than an individual. Evolutionary algorithms evolve a population of

solutions towards better solutions by evaluating them, mutating

them, and crossing the best individuals. These algorithms are in-

teresting because they can tackle problems for which there is no

known solution, but they are time-consuming and the fitness func-

tion can be difficult to obtain (Bongard, 2013).

Constructivism is the idea that humans have the ability to con-

struct knowledge in their own mind through interactions with the

environment. Constructivist artificial intelligence aims at designing

Download English Version:

https://daneshyari.com/en/article/4956335

Download Persian Version:

https://daneshyari.com/article/4956335

Daneshyari.com

https://daneshyari.com/en/article/4956335
https://daneshyari.com/article/4956335
https://daneshyari.com

