
The Journal of Systems and Software 133 (2017) 28–53

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automatic clustering constraints derivation from object-oriented

software using weighted complex network with graph theory analysis

Chun Yong Chong

a , Sai Peck Lee

b , ∗

a School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
b Department of Software Engineering, Faculty of Computer Science and IT, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia

a r t i c l e i n f o

Article history:

Received 12 July 2016

Revised 18 May 2017

Accepted 10 August 2017

Available online 12 August 2017

Keywords:

Constrained clustering

Software clustering

Software remodularisation

Graph theory

Complex network

a b s t r a c t

Constrained clustering or semi-supervised clustering has received a lot of attention due to its flexibility

of incorporating minimal supervision of domain experts or side information to help improve clustering

results of classic unsupervised clustering techniques. In the domain of software remodularisation, classic

unsupervised software clustering techniques have proven to be useful to aid in recovering a high-level

abstraction of the software design of poorly documented or designed software systems. However, there is

a lack of work that integrates constrained clustering for the same purpose to help improve the modularity

of software systems. Nevertheless, due to time and budget constraints, it is laborious and unrealistic for

domain experts who have prior knowledge about the software to review each and every software artifact

and provide supervision on an on-demand basis. We aim to fill this research gap by proposing an auto-

mated approach to derive clustering constraints from the implicit structure of software system based on

graph theory analysis of the analysed software. Evaluations conducted on 40 open-source object-oriented

software systems show that the proposed approach can serve as an alternative solution to derive cluster-

ing constraints in situations where domain experts are non-existent, thus helping to improve the overall

accuracy of clustering results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Maintenance of existing software requires plenty of time in

analysing and comprehending the available source code and soft-

ware documentation. Successful accomplishment of software main-

tenance is highly dependent on how much information can be ex-

tracted by software maintainers. However, due to prolonged main-

tenance and software updates, the architectural design of software

system tends to deviate away from the original design, causing fur-

ther difficulties in software maintenance. Recovering the architec-

ture of software is therefore an important step to aid in software

maintenance. In general, software architecture recovery aims to ex-

tract a high-level representation of the architectural information

from low-level software artifacts, such as source code, to ensure

the fulfilment of requirements, identification of reusable software

components, and estimation of cost and risks associated to any

changes in requirements (Maqbool and Babri, 2007; Riva, 2000).

Software clustering has received a substantial attention in re-

cent years due to its capability to help in recovering a semantic

∗ Corresponding author.

E-mail addresses: chong.chunyong@monash.edu (C.Y. Chong),

saipeck@um.edu.my (S.P. Lee).

representation of the software design, which directly aid in soft-

ware architecture recovery (Maqbool and Babri, 20 06, 20 07). How-

ever, software clustering is typically conducted in an unsupervised

manner where software maintainers have no influence on the end

results because the effectiveness of software clustering depends

greatly on the algorithm used. In the case if software maintain-

ers do not agree with the outcome, they will need to repeat the

process again using a different set of configuration and clustering

algorithm.

Hence, an improvement to classic unsupervised clustering ap-

proaches was proposed in the work by Basu et al. (2004), com-

monly referred as semi-supervised clustering or constrained clus-

tering, where side information is integrated to further improve the

accuracy of clustering results. In the domain of software clustering,

semi-supervised approaches typically use small samples of soft-

ware modules with known cluster assignment which enhances the

process of model training (clustering process) with software mod-

ules for which the cluster information is not available. The side

information, which is commonly referred as clustering constraints

that reveal the similarity between pairs of clustering entities or

user preferences about how those entities should be grouped dur-

ing clustering, can be originated explicitly from the domain ex-

pert or implicitly from the background knowledge of the prob-

http://dx.doi.org/10.1016/j.jss.2017.08.017

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.08.017&domain=pdf
mailto:chong.chunyong@monash.edu
mailto:saipeck@um.edu.my
http://dx.doi.org/10.1016/j.jss.2017.08.017

C.Y. Chong, S.P. Lee / The Journal of Systems and Software 133 (2017) 28–53 29

lem domain. The clustering constraints may impose certain restric-

tions such as forcing a pair of clustering entities to be always

grouped into the same cluster, or separated into disjoint clusters.

These constraints are commonly referred as must-link (ML) and

cannot-link (CL) constraints respectively. It has been proven in sev-

eral fields of research that even some minimal supervision can im-

prove the reliability and accuracy of clustering results (Davidson

and Ravi, 2009).

To help reveal the structure and behaviour of software systems,

domain experts can exert their opinions in the form of ML or CL

constraints to alter the clustering process. However, manually su-

pervising and providing clustering constraints is costly and time

consuming (Wagstaff, 2007) for large and complex software sys-

tems. Identifying relationships between software components of a

software that contains thousand or million lines of code would re-

quire a significant amount of time and effort to read all of them

carefully. Besides that, most of the time, software maintainers are

not directly involved in the early stage of software design espe-

cially if the maintenance tasks is outsourced to a third party com-

pany. The situation is even worse if the software is poorly designed

or the software documentation is not up-to-date, which is common

for systems developed in an ad-hoc manner. While most of the ex-

isting studies often assumed that feedbacks from domain experts

are always readily available, the same assumption cannot be ap-

plied in software development especially when dealing with poorly

designed or poorly documented software systems.

Most of the existing studies require access to domain experts or

a small set of clustering constraints (supervised labelled data) as

a pre-requisite. Although feedbacks or supervision by domain ex-

perts are useful, one important and non-trivial research question

remains open, i.e. how to retrieve clustering constraints if experts

are not confident with the constraints given or such expertise is

not available. While various studies have shown that a small num-

ber of constraints can greatly improve the result of clustering, most

of the studies assumed that constraints are given prior to the ex-

periment, and those constraints are absolute and without any am-

biguity. In the normal software development practice, the avail-

ability of clustering constraints is limited due to reasons such as

high cost, time constraint, out-dated software documentations, or

limited background knowledge on the software to be maintained

(Harman et al., 2012). For instance, domain experts who were in-

volved in the early stage of software design might provide some

constraints about the software to be maintained. However, such

constraints might not be valid anymore after several phases of

software updates and changes. Thus, the constraints given by the

aforementioned experts might be ambiguous or contain erroneous

information. In such cases, regular supervised or semi-supervised

techniques discussed above cannot be used to effectively recover a

high-level abstraction of software design. Hence, constrained clus-

tering approaches that automatically generate or derive constraints

from the implicit structure and behaviour of the dataset, and rely

less on human effort, are more preferred in the domain of soft-

ware.

To address this issue, this research proposes an approach to au-

tomatically derive ML and CL constraints from the implicit struc-

ture of the software itself based on graph theory analysis of the

studied software, without feedbacks and supervision from domain

experts. First, the software to be analysed is represented using

a weighted complex network, followed by graph theory analysis

to reveal some extra deterministic information about relationships

among all the associated classes. The information is then used to

support the subsequent constrained clustering approach to form

cohesive clusters that are representative enough to show a high-

level representation of the software design. The recovered high-

level software design can act as supplementary information for

software maintainers to aid in decision making when there is a

request to modify or remove a particular software component. The

contribution of this paper can be summarised as follows:

1. An approach to apply semi-supervised constraint clustering to

aid in recovering a high-level abstraction of object-oriented

software design.

2. An approach to derive clustering constraints from software sys-

tems without the feedback and supervision from domain ex-

perts.

3. An alternative solution to derive clustering constraints that

helps in improving the accuracy of conventional software clus-

tering approaches.

The paper is organized as follows: Section 2 discusses the back-

ground and related work in constrained clustering, including ways

to generate and acquire constraints. Section 3 presents the pro-

posed approach to automatically derive clustering constraints from

an object-oriented software system. Section 4 presents the ex-

perimental design, along with the execution of the experiment.

Section 5 gives an overall discussion based on the results obtained

in the previous section. Section 6 discusses the threats to validity

in this study. Finally, concluding remarks and potential future work

are presented in Section 7 .

2. Background and related works

Semi-supervised clustering, or commonly referred as con-

strained clustering has proven to be a reliable alternative to clas-

sic unsupervised approaches where a small quantity of clustering

constraints is introduced in the clustering process. Clustering con-

straints in the form of ML and CL constraints guide the clustering

algorithm into an adequate partitioning of the data, and often, im-

proves the clustering performance significantly. Existing methods

for constrained clustering fall into three categories: distance based

(Bilenko and Mooney, 2003; Klein et al., 2002; Shental and Wein-

shall, 2003), constrained based (Davidson and Ravi, 2009; Kestler

et al., 2006), and the hybrid of both.

In the domain of software, it is highly possible that software

maintainers may have access to additional information about the

software to be maintained, either explicitly or implicitly. For in-

stance, domain experts or software developers who are involved in

the early stages of software design or development are able to pro-

vide feedbacks to indicate whether a pair of software components

should be clustered into the same functional group. This type of

information, which is based on the explicit opinions and feedbacks

from the domain experts, are referred as explicit clustering con-

straints. Domain experts often act as oracles in constrained clus-

tering (Basu et al., 2004), where in general, a pair of clustering en-

tities are chosen at random and presented to the oracle to judge

and decide if they should or should not be grouped into the same

cluster.

On the other hand, implicit information refers to some extra de-

terministic information about the interrelationships between soft-

ware components derived from the source code itself. In various

fields of research, a limited degree of side information can be re-

vealed when performing an exploratory data analysis (Greene and

Cunningham, 2007). For instance, two classes associated with in-

heritance relationship in object-oriented (OO) paradigm typically

have stronger tendency to be grouped into the same cluster. While

the given example is a straightforward one, effectively deriving im-

plicit information from the source code requires in-depth under-

standing on the structure and behaviour of software systems. Soft-

ware maintainers would require tool support to effectively identify

and interpret the implicit information hidden in the source code

because the quantity and level of granularity of the information

might be too overwhelming to comprehend. The vast amount of

Download English Version:

https://daneshyari.com/en/article/4956360

Download Persian Version:

https://daneshyari.com/article/4956360

Daneshyari.com

https://daneshyari.com/en/article/4956360
https://daneshyari.com/article/4956360
https://daneshyari.com

