
Microprocessors and Microsystems 48 (2017) 62–68 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Empirical results on parity-based soft error detection with 

software-based retry 

Gökçe Aydos a , ∗, Goerschwin Fey 

a , b 

a University of Bremen, Bremen, Germany 
b German Aerospace Center, Bremen, Germany 

a r t i c l e i n f o 

Article history: 

Received 28 February 2016 

Revised 21 June 2016 

Accepted 16 September 2016 

Available online 17 September 2016 

Keywords: 

Fault-tolerance 

FPGA 

LTMR 

Parity 

Error-detection 

Retry 

a b s t r a c t 

Local triple modular redundancy (LTMR) is often the first choice to harden the FFs of a flash-based FPGA 

application against radiation-induced bitflips in space, but LTMR leads to an area overhead of roughly 

300%. To cope with this significant overhead, we propose an error detection based approach. In this work, 

we compare parity-based error detection with software-based retry, and LTMR on a reference architecture 

regarding maximum frequency, area overhead and processing time. Our results show that our solution 

based on parity-based error-detection saves from 29% up to 36% of the area overhead caused by LTMR. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Field-programmable gate arrays (FPGAs) are often utilized in 

space avionics due to their processing efficiency, reprogrammabil- 

ity, and extensible interface capabilities; providing flexibility for 

a range of mission requirements. The avionics must be protected 

from ionizing radiation in space. In the absence of a shield (e.g., 

magnetic field of the earth), high energy particles can traverse 

through a digital circuit and cause errors. These errors can be 

caused by permanently damaging the semiconductor structure or 

induce significant amount of charge leading to a transient voltage 

pulse on a net, which can eventually lead to hard or soft errors, 

respectively. 

The most common functional transient radiation effects that 

happen on the gate level, which can cause a soft error, are the sin- 

gle event-transient (SET) and -upset (SEU). An SET can be seen as a 

transient voltage pulse on a circuit net. If such a change happens 

on a data net and then latched by a FF, this transient can lead to 

an upset of the FF-bit and thus to an SEU. SEUs are not permanent 

and can be corrected e.g., with a reset. 

Fault-tolerance against SEUs can be implemented at various lev- 

els of a circuit, e.g., process- or design-level. Hardening a circuit at 

the design-level is referred as radiation hardening by design (RHBD) 

∗ Corresponding author. 

E-mail addresses: goekce@cs.uni-bremen.de (G. Aydos), goerschwin.fey@dlr.de 

(G. Fey). 

[1] and involves the wise use of available design elements by the 

designer. RHBD is preferred if the designer has merely access to a 

commercially available integrated circuits (ICs) and IC manufacture 

processes, respectively. 

The right RHBD techniques depend on the underlying FPGA ar- 

chitecture. Currently, three memory architectures exist on the mar- 

ket dependent on how the programmable logic is configured. These 

are SRAM-, flash- and antifuse-based architectures. On SRAM- 

based FPGAs, the circuit programming information, i.e., configura- 

tion, is stored on SRAM. SRAM has a high SEU sensitivity, therefore, 

compared to antifuse- and flash-based configurations, the configu- 

ration of SRAM-based parts must additionally be protected. 

In this work, we assume a flash-based FPGA architecture. In 

flash-based FPGAs, SEUs mainly happen in the flip-flops (FFs) of 

an FPGA application. The FPGA configuration bits do not have to 

be protected, because flash memory has a negligible soft error rate 

due to SEUs. 

The state-of-the-art solution against single bitflips for flash- 

based FPGAs is the local triple modular redundancy (LTMR), i.e., trip- 

licating the application FFs and voting their outputs. Unfortunately, 

triplication has a significant area overhead. Alternatively, a part of 

the space redundancy in the FPGA may be eliminated by imple- 

menting additional time redundancy, e.g., in software, if the FPGA 

acts as a co-unit beside an already radiation-hardened processor. 

An example architecture is depicted in Fig. 1 , where the FPGA 

implements the communication protocol interfaces needed for 

http://dx.doi.org/10.1016/j.micpro.2016.09.009 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2016.09.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.09.009&domain=pdf
mailto:goekce@cs.uni-bremen.de
mailto:goerschwin.fey@dlr.de
http://dx.doi.org/10.1016/j.micpro.2016.09.009


G. Aydos, G. Fey / Microprocessors and Microsystems 48 (2017) 62–68 63 

data handling subsystem

fault-tolerant
processor FPGA subsystem

link links

Fig. 1. Overview of the reference data handling architecture. Processor communi- 

cates with the subsystems through the FPGA. 

communicating with the satellite subsystems and the processor 

runs the mission software. 

The FPGA circuit which has to be hardened, only implements 

error detection. In case of an error, this circuit is functionally iso- 

lated, then recovered and the software finally instructs the cir- 

cuit to reprocess the last request. With this collaborative approach, 

error correction is achieved and the overhead of local error cor- 

rection is eliminated in the FPGA. This technique will be referred 

as error detection with software-based retry (EDSR). In this paper, 

parity-based error detection (PBED) is used in EDSR. 

Parity-based codes and triplication are well-known concurrent er- 

ror detection techniques (CED) [2,3] . Also error detection with retry 

for achieving error correction was proposed, e.g., in [4] . In re- 

cent years, one the one hand, partial hardening techniques were 

proposed due to the relatively high overhead of CED techniques, 

which selectively harden susceptible parts of the circuit [5] . On 

the other hand, software-based fault-tolerance techniques are also 

popular due to the flexibility and relatively loose constraints of 

software, e.g., regarding memory requirements, compared to hard- 

ware [6,7] . Software- and hardware-based techniques have their 

tradeoffs, therefore these can also be used together [6] . 

This work applies parity-based EDSR on an example data han- 

dling architecture based on a commercially-available flash-based 

FPGA and provides an experimental comparison to LTMR. Up to 

now, there is no detailed comparison based on a state-of-the- 

art (e.g., [8,9] ) flash-based FPGA. Due to the limited resources of 

space-proven flash-based FPGAs, area savings can be the key for 

fitting the application onto the FPGA. Our contributions are 

• EDSR in the context of the full system stack including the dis- 

cussion of requirements for the application 

• fault tolerance analysis of transaction-based processing, which 

is an important part of EDSR 

• empirical comparison of LTMR versus EDSR for circuit area 

overhead, maximum circuit frequency, and overall system la- 

tency due to error correction on a representative system in 

space-proven technology 

In the following sections, we firstly present the reference data 

processing system, which is used as an example implementation 

for our approach. In Section 3 , we explain LTMR and EDSR and the 

implementations which are compared. In Section 4 , we generalize 

the processing approach shown in Section 3 and discuss its fault 

tolerance. Section 5 presents synthesis results based on a known 

flash-based FPGA. We end the paper with a brief conclusion. 

2. Reference architecture 

We use a reference model of an on-board data handling unit 

(OBDH) for satellites [9] for our analysis. Using this example archi- 

tecture we will explain how EDSR is implemented in particular, be- 

cause LTMR is mostly architecture-independent. First, we describe 

an overview of the system, then the FPGA design, and finally the 

communication protocol between the processor and the FPGA. 

2.1. Overview 

Fig. 1 shows an overview of the architecture. OBDH comprises 

of two main processing modules: a processor and an FPGA. The 

FIFO

FIFO

circuit
A

circuit
B

error
detection

error
handling

mem.

circuit
C

error

data
read en.

mask

data
write en.

address
data
data

read en.

write en.

mask

reset

Fig. 2. Excerpt from the FPGA design. Circuit B is hardened by PBED using the gray 

components. Other circuits are immune to soft errors. 

reset
parse
header

write
RAM

read
RAM

send
resp.

Fig. 3. Simplified state diagram of circuit B, which parses the remote memory pack- 

ets sent by the mission software (i.e., the processor). 

processor runs the mission software, which involves communicat- 

ing with different subsystems on-board of the space system. The 

communication is done through the FPGA, which acts as an inter- 

face component and implements the various communication inter- 

faces needed by the subsystems (e.g., RS232, CAN). We assume that 

the processor, the communication line between the processor and 

the FPGA, and the subsystems are sufficiently protected against soft 

errors. 

2.2. FPGA design 

From the processor point of view, the FPGA is a remote memory 

bus, where the implemented link interfaces are memory-mapped. 

The processor utilizes these interface modules by reading and writ- 

ing the respective memory areas. 

The simplified FPGA model consists of three functional blocks: 

sequential circuits A, B, and C as shown in Fig. 2 . Circuit A serves 

the memory access requests from the processor to circuit B, which 

issues memory accesses on circuit C and finally returns the data to 

the processor using the FIFO interface of circuit A. In Fig. 3 , circuit 

B is shown more in detail. Circuit C with a memory block inside 

resembles the memory-mapped interfaces. The memories transfer 

one word per cycle. Circuit A and C including the FIFOs and RAM 

are assumed to be sufficiently protected against soft errors (e.g., by 

LTMR and error correcting and detecting code). Circuit B must be 

hardened by design. 

The FIFOs and the memory need a single clock cycle for reading 

or writing a single word, which enables the masking a single word 

access operation in the same clock cycle. 

2.3. Communication protocol 

The communication protocol between the processor and the 

FPGA is visualized in Fig. 4 . The protocol consists of two kinds 

of messages: request and response , which both make up a single 

transaction. The processor sends memory access requests for a spe- 

cific address or address interval to the FPGA and the FPGA (more 

precisely, circuit B answers with the according response: A read 

request is responded with read data and a write request is ac- 

knowledged after the write operation. Every request is acknowl- 

edged with a response and a second request cannot be sent before 

the response to the first request has been received. If the FPGA 

does not respond after a timeout, e.g., due to a soft error, the last 

request is repeated. 



Download English Version:

https://daneshyari.com/en/article/4956815

Download Persian Version:

https://daneshyari.com/article/4956815

Daneshyari.com

https://daneshyari.com/en/article/4956815
https://daneshyari.com/article/4956815
https://daneshyari.com

