
ARTICLE IN PRESS 

JID: MICPRO [m5G; October 24, 2016;9:33 ] 

Microprocessors and Microsystems 0 0 0 (2016) 1–13 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Debugging hardware designs using dynamic dependency graphs 

Jan Malburg 

a , b , 1 , ∗, Alexander Finder a , 2 , Görschwin Fey 

a , b 

a University of Bremen, Bibliothekstr. 1 (MZH), 28359 Bremen, Germany 
b German Aerospace Center, Robert-Hooke-Str. 7, 28359 Bremen, Germany 

a r t i c l e i n f o 

Article history: 

Received 6 August 2015 

Revised 20 May 2016 

Accepted 19 October 2016 

Available online xxx 

Keywords: 

Dynamic dependency graphs 

RTL 

Fault localization 

Debugging 

a b s t r a c t 

Debugging is a time consuming task in hardware design. In this paper a new debugging approach based 

on the analysis of dynamic dependency graphs is presented. Powerful techniques for software debug- 

ging, including reverse debugging, dynamic forward and backward slicing, and spectrum-based fault lo- 

calization are combined and adapted for hardware designs. A case study on designs with multiple faults 

approved the power of the proposed debugging methodology reducing the debugging time to 50% in 

comparison to conventional techniques. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Consuming more than 46% of the total ASIC development ef- 

fort, verification already is a bottleneck in the design flow [1] . The 

fastest growing component of the verification process, and with 

60% already the largest one, is debugging, i.e. fault localization and 

error correction. To a large extent debugging is still a manual task, 

where a developer must understand an error based on a sequence 

of input values for which the design yields incorrect outputs. Af- 

terwards, he has to localize and fix the fault in the design. This is 

normally done using a simulator which presents the values of the 

different variables in a waveform. 

Several techniques for helping the developer in debugging have 

been proposed. Reverse debugging has already been applied on 

software, reducing the debugging time to 25% [2] and is, for exam- 

ple, implemented in the commonly used software debugger GDB 

[3] . Dynamic forward and backward slicing reduces the amount of 

code the developer has to inspect in order to find and fix a bug [4] . 

Spectrum-based fault localization uses program spectra of correct 

and incorrect simulation runs to identify parts of the code which 

are likely to contain a bug [5] . This gives the developer further 

guidance while searching for the fault that causes the error. 

In this paper we present the following debugging techniques for 

Hardware Description Languages (HDL): 

∗ Corresponding author. 

E-mail addresses: Jan.Malburg@dlr.de (J. Malburg), alexander.finder@daimler.com 

(A. Finder), Goerschwin.Fey@dlr.de (G. Fey). 
1 During the work Jan Malburg changed to German Aerospace Center. 
2 Present affiliation: Daimler AG, Hanns-Klemm-Str. 45, 71034 Böblingen, Ger- 

many 

• The use of reverse debugging 
• Dynamic program slicing which considers control dependency 
• Spectrum-based fault localization based on dynamic depen- 

dency graphs 

For the implementation of our approach we use dynamic de- 

pendency graphs [6] , which we additionally annotated with the 

values of the operands for each vertex of the graph. We imple- 

mented a Graphical User Interface (GUI) allowing the developer to 

investigate single simulation runs of his design. To improve the de- 

veloper’s understanding of a run, the GUI presents the run as a 

graph with the executed source code as vertices, dependencies as 

edges, and temporal behavior as time line. The graph can be shown 

in different granularities. In addition, the user is able to combine 

different granularity-levels with each other. 

We conducted a case study on designs with multiple faults in 

which we compared our approach with a conventional debugging 

approach. In this case study, our approach showed a reduction of 

debugging time by 50% compared to the conventional approach. 

The remainder of this paper is organized as follows: In 

Section 2 we summarize related work. Section 3 presents defi- 

nitions used throughout the paper. In Section 4 our approach is 

introduced in detail. The evaluation of our approach is given in 

Section 5 and Section 6 concludes the paper. 

2. Related work 

So far, there exist several methods to support a developer in 

debugging a design both for software [2,4,5,7–10] and for hardware 

[11–16] . 

http://dx.doi.org/10.1016/j.micpro.2016.10.004 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: J. Malburg et al., Debugging hardware designs using dynamic dependency graphs, Microprocessors and Mi- 

crosystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.10.004 

http://dx.doi.org/10.1016/j.micpro.2016.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:Jan.Malburg@dlr.de
mailto:alexander.finder@daimler.com
mailto:Goerschwin.Fey@dlr.de
http://dx.doi.org/10.1016/j.micpro.2016.10.004
http://dx.doi.org/10.1016/j.micpro.2016.10.004


2 J. Malburg et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–13 

ARTICLE IN PRESS 

JID: MICPRO [m5G; October 24, 2016;9:33 ] 

A typical approach for software is to reduce the amount of code 

a developer has to inspect in order to find a fault. One of these 

techniques is static program slicing, proposed by Weiser [7] . For a 

given set of program points (slicing criterion), static program slic- 

ing computes all statements, for which an input to the system 

exists, such that those statements influence the slicing criterion 

(backward slicing) or can be affected by the slicing criterion (for- 

ward slicing). 

While debugging, a developer normally knows an execution for 

the system which reveals an error. Korel and Laski [4] proposed 

dynamic program slicing which computes the statements that af- 

fect (or are affected by) the slicing criterion under a given input. 

Zhang et al. [17] describe three different types of dynamic slicing. 

In data slicing only data dependencies are included. For full slic- 

ing control dependencies are additionally contained and for rele- 

vant slicing also statements are considered which could change the 

value of a variable by changing the system’s execution path. 

Another approach to reduce the amount of code a developer 

must investigate, is automated fault localization which computes 

parts of the source code that might contain a fault. In spectrum- 

based fault localization, program spectra, for example, coverage in- 

formation of failing and succeeding test cases, are used to local- 

ize a fault. A well-known tool applying spectrum-based fault lo- 

calization is the visualization tool Tarantula [5] . The tool colors 

statements in the source code depending on their suspiciousness 

of causing an error. The suspiciousness is computed by compar- 

ing the amount of failing and succeeding runs which execute the 

statements. 

A technique closely related to spectrum-based fault localiza- 

tion is spectrum-based feature localization [18] . Both techniques 

use coverage information and heuristics to compute whether some 

part of the code is related to some behavior of the system. In case 

of fault localization this is the cause of an incorrect behavior and 

in case of feature localization the code responsible for an intended 

behavior. The heuristics used for spectrum-based fault localization 

can, with only small changes, be applied to spectrum-based feature 

localization [19] . 

In [8] Renieres and Reiss present another technique for fault lo- 

calization. Their approach searches for a successful test case with 

minimal difference to the failing test case. Then those parts of the 

code are reported as fault candidates which are covered by the fail- 

ing run, but not by the successful run. Groce et al. [9] further for- 

malized the approach using a model checker to generate a success- 

ful run with minimal distance to the failing run. 

Delta Debugging [10] aims at helping a developer in finding a 

fault by isolating the possible trigger of the fault. Delta Debugging 

originally was presented to determine those changes to a software 

system which cause a regression error. Later Delta Debugging has 

been extended to minimize error revealing inputs to the system 

and to find the minimal change which must be applied to a failing 

run such that the result becomes correct [20] . The intuition is that 

knowing the trigger of an error helps in understanding the error 

and a smaller test input executes less code of the system such that 

the possible fault locations can be restricted. 

In [2] Lewis describes a tool for Java programs called Omni- 

scient Debugger which allows to step backwards in the execution of 

a program. In this approach, first an instrumented version of the 

program is executed and all events, i.e. assignments to variables, 

function calls, returns from method calls, etc. are stored. Then a 

GUI answers questions in the form of “Where has the value of this 

variable been set?” and allows the user to step forward and back- 

ward through the program’s execution. 

Clarke et al. [11] developed an adaption of static program slicing 

for code in HDL. In their approach they relate HDL-constructs to 

constructs of software languages. 

Path tracing [12] follows the controlling inputs of different gates 

to determine the critical path which is responsible for the value of 

a given signal. In [13] a description is given how to apply path trac- 

ing on HDL-level. However, the approach only considers data de- 

pendency and neglects control dependency. Also all kinds of path 

tracing neglect forward dependencies. Altogether, path tracing can 

be understood as backward dynamic program slicing applied to 

hardware systems. 

In [21] Stumptner and Wotawa describe model-based diagno- 

sis [22] for hardware description languages. In their approach they 

generate different versions of the design based on a set of con- 

struction rules to decide whether the incorrect behavior can be 

fixed by this change, i.e., the inverse of the change explains the in- 

correct behavior. They use the number of changes which must be 

applied to the design as a ranking function for their explanations 

such that fewer changes are considered better explanations. Often 

program slicing is applied for model-based diagnosis to reduce the 

amount of possible changes which has to be considered [23] . 

Another type of model-based diagnosis for hardware designs is 

Satisfiability (SAT)-based debugging [14] . Given a set of stimuli to a 

design which result in the violation of the specification, SAT-based 

debugging uses a SAT-solver to explain the incorrect behavior of 

the design. The circuit is transformed into a Boolean formula and 

the SAT-solver determines a minimal number of fault candidates 

which must be corrected to fulfill the specification. However, the 

SAT-based approach is limited to the capability of the underlying 

SAT-solver making the application unfeasible for larger designs. 

In [15] two analysis, “What-if” and “How-can” are presented 

which are based on dynamic data flow analysis. “What-if” analysis 

computes how the change of one or several values affects a target 

value. The idea is similar to a conventional debugger, where a user 

can change the value of the variable during debugging. “How-can”

analysis computes the values for a set of signals, such that a tar- 

get signal gets a desired value. This analysis is similar to the idea 

of SAT-based debugging. To prevent high runtimes they limit the 

set on which the search is conducted to 70 binary variables, what 

however, also limits the practical benefit of the analysis. 

Beer et al. [16] describe a technique which computes the cause 

of the violation of a specification given as a Linear Time Logic 

(LTL)-formula. The technique requires the specification and a vi- 

olating simulation run. However, they do not consider expressions 

or statements as cause for a violation, instead they consider the 

valuation of one or more variables as the cause of the violation. 

Hence their approach does not give any information why the val- 

uation is wrong at this point. The reason could be that an assign- 

ment is missing or that the previous assignment was wrong. Fur- 

ther, their approach does not distinguish between the case that 

changing the variable found would fix the violation and the case 

that changing the variable found only pushes the violation to an- 

other clock cycle. 

In [24] Le, Große, and Drechsler present a technique for Sys- 

temC Transaction-Level Modeling (TLM) fault localization. Their ap- 

proach targets faults at the level of transaction, synchronization, 

and timing. Thus, they do not consider faults in the form of incor- 

rect assignment to variables, incorrect formulas or similar. If a de- 

sign is erroneous, they create a set of alternative designs based on 

their fault model. These changes to the design are parametrized. 

Then a model checker is used to check whether a changed de- 

sign is fault free for some concrete parameter value. Those designs 

which can correct the fault are reported as diagnosis of the er- 

ror. Compared to our approach they target different kinds of faults. 

First of all, they target typical faults introduced at the TLM-level, 

for example synchronization errors between transactions. These 

are not common faults at the RT-level at which our approach 

works; in fact, transactions like in TLM do not exist at the RT-level. 

Please cite this article as: J. Malburg et al., Debugging hardware designs using dynamic dependency graphs, Microprocessors and Mi- 

crosystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.10.004 

http://dx.doi.org/10.1016/j.micpro.2016.10.004


Download English Version:

https://daneshyari.com/en/article/4956873

Download Persian Version:

https://daneshyari.com/article/4956873

Daneshyari.com

https://daneshyari.com/en/article/4956873
https://daneshyari.com/article/4956873
https://daneshyari.com

