
ARTICLE IN PRESS 

JID: MICPRO [m5G; September 15, 2016;7:30 ] 

Microprocessors and Microsystems 0 0 0 (2016) 1–12 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Observability solutions for in-field functional test of processor-based 

systems: A survey and quantitative test case evaluation 

J. Perez Acle 

a , ∗, R. Cantoro 

b , E. Sanchez 

b , M. Sonza Reorda 

b , G. Squillero 

b 

a Universidad de la República , Montevideo , Uruguay 
b Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy 

a r t i c l e i n f o 

Article history: 

Received 1 April 2016 

Revised 24 July 2016 

Accepted 10 September 2016 

Available online xxx 

Keywords: 

Functional test 

Software-based self-test 

Performance counters 

Fault simulation 

Observability 

a b s t r a c t 

The usage of electronic systems in safety-critical applications requires mechanisms for the early detection 

of faults affecting the hardware while the system is in the field. When the system includes a processor, 

one approach is to make use of functional test programs that are run by the processor itself. Such pro- 

grams exercise the different parts of the system, and eventually expose the difference between a fully 

functional system and a faulty one. Their effectiveness depends, among other factors, on the mechanism 

adopted to observe the behavior of the system, which in turn is deeply affected by the constraints im- 

posed by the application environment. This paper describes different mechanisms for supporting the ob- 

servation of fault effects during such in-field functional test, and it reports and discusses the results of an 

experimental analysis performed on some representative case studies, which allow drawing some general 

conclusions. The gathered results allow the quantitative evaluation of the drop in fault coverage coming 

from the adoption of the alternative approaches with respect to the ideal case in which all the outputs 

can be continuously monitored, which is the typical scenario for test generation. The reader can thus 

better evaluate the advantages and disadvantages provided by each approach. As a major contribution, 

the paper shows that in the worst case the drop can be significant, while it can be minimized (with- 

out introducing any significant extra cost in terms of test generation and duration) through the adoption 

of a suitable observation mechanism, e.g., using Performance Counters possibly existing in the system. 

Suitable techniques to implement fault simulation campaigns to assess the effectiveness of different ob- 

servation mechanisms are also described. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In several domains (e.g., automotive, biomedical, space and air- 

craft industries) electronic systems are commonly used in mission- 

and safety-critical applications. In these domains, misbehavior due 

to a defect affecting the hardware may have catastrophic effects, 

including hurting humans and provoking huge economic losses. 

Hence, there is a strong push to devise techniques able to mini- 

mize the probability that a misbehavior caused by a defect arises, 

and to suitably handle it in case it manifests itself anyway. When 

considering the latter point, different solutions have been pro- 

posed, and the best solution depends on the specific constraints 

of each scenario. Standards and regulations (e.g., IEC 61508 for 

generic safety-related industrial systems, ISO 26262 for automotive 

∗ Corresponding author at: IIE - Facultad de Ingenieria, Herrera y Reissig 565, 

Montevideo 11300, Uruguay. 

E-mail addresses: julio@fing.edu.uy (J. Perez Acle), riccardo.cantoro@polito.it (R. 

Cantoro), ernesto.sanchez@polito.it (E. Sanchez), matteo.sonzareorda@polito.it (M. 

Sonza Reorda), giovanni.squillero@polito.it (G. Squillero). 

applications, RTCA/DO-254 for avionics) also play a significant role, 

forcing companies to devise and adopt solutions able to achieve 

some predefined target in terms of dependability. 

Most of the electronic systems involved in safety-critical appli- 

cations include a microprocessor or microcontroller. For these sys- 

tems, it is possible to force programmable units to run test pro- 

grams able to reveal the presence of defects by activating them 

and propagating their effects up to an observable location (e.g., a 

special memory area). Eventually, the application may trigger suit- 

able actions to prevent catastrophic consequences, such as turning 

the system to a safe status, or reconfiguring it so that the faulty 

module is not used any more. To minimize the impact on the sys- 

tem, these test programs are often limited to use the time periods 

left idle by the core applications, or run during the start-up/power- 

off phases. Such an approach is referred to as Software-Based Self- 

Test (SBST) [1] , and generically labeled as “functional” as it relies 

directly on the normal functions of the system. SBST does not re- 

quire any specific Design-for-Testability (DfT) structure, although it 

may exploit available hardware features, and can be used to test 

any processor-based system, no matter whether it is a System-on- 

http://dx.doi.org/10.1016/j.micpro.2016.09.002 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: J. Perez Acle et al., Observability solutions for in-field functional test of processor-based systems: A survey and 

quantitative test case evaluation, Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.09.002 

http://dx.doi.org/10.1016/j.micpro.2016.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:julio@fing.edu.uy
mailto:riccardo.cantoro@polito.it
mailto:ernesto.sanchez@polito.it
mailto:matteo.sonzareorda@polito.it
mailto:giovanni.squillero@polito.it
http://dx.doi.org/10.1016/j.micpro.2016.09.002
http://dx.doi.org/10.1016/j.micpro.2016.09.002


2 J. Perez Acle et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–12 

ARTICLE IN PRESS 

JID: MICPRO [m5G; September 15, 2016;7:30 ] 

Chip (SoC) or a board. As a major advantage, test based on SBST 

can be run at the processor operational speed, thus allowing the 

detection of defects which are only activated at the maximum fre- 

quency. For this reason, it is often used during the manufacturing 

test phase as a supplement to other techniques to increase the fi- 

nal defect coverage. 

SBST is currently adopted in quite different test scenarios, in- 

cluding both end-of-manufacturing test and in-field test. When 

applied for end-of-manufacturing test, either the automatic test 

equipment (ATE) drives the processor inputs while it executes the 

program and observes the outputs, or it loads a program into the 

cache of the processor, forces it to execute at full speed, and even- 

tually extracts some test syndrome from a special (hidden) regis- 

ter. On the other side, when in-field SBST is considered, a common 

solution lies in storing the test program in a flash memory, activat- 

ing its execution when required, and finally checking the content 

of some selected memory variables, where the test program stores 

its results. 

When comparing the SBST solutions adopted for end-of- 

manufacturing test with those for in-field test, a major difference 

is that the former can, in some cases, benefit from full accessibility 

to the input and output signals of each device (such a test scenario 

is called “open loop test” in [32] ). On the contrary, in solutions ori- 

ented to in-field testing, the tester cannot be used and existing DfT 

structures are in most of the cases not available (e.g., because they 

have been destroyed or made inaccessible to better protect the sys- 

tem security, or because they are not documented by the device 

providers). Hence, the only feasible solution for the system com- 

pany in charge of developing the in-field test is to adopt a purely 

functional approach, i.e., without resorting to any DfT feature. Ad- 

ditionally, in-field constraints may be quite severe: for example, 

the memory area usable by the test could be limited to a spe- 

cific size and location, and some faults may become functionally 

untestable [9] (i.e., no test stimuli exist for them under the in-field 

test scenario). Although untestable faults by definition cannot af- 

fect the system behavior, they may significantly limit the fault cov- 

erage that can be achieved, even using a high-quality test program. 

Hence, it is desirable to be able to identify untestable faults. 

Concerning observability, some solutions adopted for end-of- 

manufacturing test may allow the continuous monitoring of all the 

output signals of the device under test by the ATE. On the con- 

trary, with in-field SBST the ATE cannot be used, and thus the ef- 

fects of faults are typically observed by checking, at the end of the 

test program execution, the values left by the program in some 

specified memory locations. This limited observability may signif- 

icantly reduce the achievable fault coverage; some specific fault 

categories are known to be untestable if fault detection is only 

based on looking at the final memory content. In particular, faults 

that only affect the time behavior of the processor (e.g., by delay- 

ing some operation) found in modules such as Cache Controllers 

[8] and Branch Prediction Units [7] cannot be detected in this way. 

The test of these performance faults [3] can be successfully faced by 

resorting to the so-called performance counters existing in most 

of the current microprocessors and microcontrollers [4] . Alterna- 

tively, one can resort to special hardware modules that can be 

added to a processor, able to monitor the bus during the execu- 

tion of a test program and then compute a signature. As a result, 

re-using any test programs developed for high-observability end- 

of-manufacturing SBST for in-field SBST may be either very expen- 

sive, or result in a significant drop of the achieved fault coverage. 

Recently, some papers specifically focused on the generation of test 

programs for in-field SBST [16] . 

The main purpose of this paper is to survey the different solu- 

tions that can be adopted in practice to support the observation of 

fault effects when SBST is adopted for in-field test, discussing the 

advantages and limitations of each of them. Secondly, the paper 

uses two test cases to quantitatively evaluate the benefits and cost 

of each observability solution: one targets the branch prediction 

unit (BPU) in a MIPS-like processor based system, and the other 

targets the cache controller logic in a dual-core LEON3 system. This 

paper is the first to report extensive experimental results to com- 

pare the fault coverage that can be achieved with the different so- 

lutions, thus allowing the reader to have a better understanding 

of the advantages and disadvantages provided by the different so- 

lutions. 1 Finally, the paper outlines some techniques to compute 

fault coverage figures related to the usage of an SBST approach 

with different observation mechanisms. 

The paper is organized as follows: Section II provides an 

overview of the state-of-the-art in the area of SBST, with special 

emphasis on in-field SBST. Section III describes the different ob- 

servability solutions we considered in this paper. Section IV de- 

scribes the experiments we performed on the two sample systems 

to quantify the effects stemming from the adoption of the different 

observability solutions. Finally, Section V draws some conclusions. 

2. Background on software-based self-test 

The term Software-Based Self-Test (SBST) was first proposed by 

Chen and Dey in [14] , but the approach itself has been proposed 

few years before under the name “Native Mode Functional Test ” in 

[32] and [33] . SBST broadly identifies all test methodologies based 

on forcing a microprocessor/microcontroller to execute a program 

and checking the results to detect the presence of possible defects 

affecting the hardware. Indeed, the pioneering idea of testing a mi- 

croprocessor with a program dates back to 1980. In [10] , Thatte 

and Abraham devised fault models and procedures for building test 

programs able to detect permanent defects in different functional 

units of a simple processor. A wide adoption of their methodology 

was hindered by the difficulties in automating the generation of 

such test programs, especially when targeting complex processors. 

In general, the usage of SBST requires: 

1. Generating a suitable test program. This is typically a hard job, 

which is still mainly performed by hand. Moreover, the com- 

plexity and effectiveness of this task depends on the adopted 

metric, which in turns depends on the available information: 

in some cases, both RTL and gate-level models of the target 

system are available, while in others functional information is 

available, only. For the purpose of this paper, we assume that 

the gate-level netlist is available, and it is possible to compute 

the fault coverage achieved by the generated test program with 

respect to the most common structural fault models (e.g., stuck- 

at). 

2. Creating an environment to support its execution. Once the test 

program is available, it must be stored in some memory acces- 

sible by the processor, the processor must be triggered to ex- 

ecute it at the due time, and the results produced by the pro- 

cessor during its execution must be observed. In this paper we 

specifically focus on the last issue. 

Nowadays, the complexity of processors has significantly in- 

creased; the micro-architectural details play a fundamental role, 

and devices cannot be accurately modeled using information about 

the Instruction Set Architecture (ISA) alone. However, SBST is get- 

ting more and more important: it commonly supplements other 

kinds of tests, as functional programs may detect unmodeled de- 

fects that escape traditional structural tests (the so-called “collat- 

eral coverage” [11] ). By definition, the functional approach tests the 

1 A preliminary version of this work was presented in [31] . In the current ver- 

sion we significantly extended (among the other things) the Experimental Results 

section by adding a further test case and improving the results analysis. 

Please cite this article as: J. Perez Acle et al., Observability solutions for in-field functional test of processor-based systems: A survey and 

quantitative test case evaluation, Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.09.002 

http://dx.doi.org/10.1016/j.micpro.2016.09.002


Download English Version:

https://daneshyari.com/en/article/4956878

Download Persian Version:

https://daneshyari.com/article/4956878

Daneshyari.com

https://daneshyari.com/en/article/4956878
https://daneshyari.com/article/4956878
https://daneshyari.com

