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A B S T R A C T

Linear programming is now included in algorithm undergraduate and postgraduate

courses for computer science majors. We give a self-contained treatment of an interior-

point method which is particularly tailored to the typical mathematical background

of CS students. In particular, only limited knowledge of linear algebra and calculus is

assumed.
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1. Introduction

Terlaky [1] and Lesaja [2] have suggested simple ways to
teach interior-point methods. In this paper, we suggest an
alternative and maybe still simpler way which is particularly
tailored to the typical mathematical background of CS
students. In particular, only limited knowledge of linear
algebra and calculus is assumed. We have selected most of
the material from popular textbooks [3–8] to assemble a self-
contained presentation of an interior point method—little of
this material is new.

The canonical linear programming problem is to

minimize cTx subject to Ax = b and x ≥ 0. (1)

Here, A is an m × n matrix, c and x are n-dimensional, and b
is an m-dimensional vector. A feasible solution is any vector x
with Ax = b and x ≥ 0. The problem is feasible if there is a
feasible solution, and infeasible otherwise. A feasible problem
is unbounded (or more precisely the corresponding objective
function is unbounded) if for every real z, there is a feasible x
with cTx ≤ z, and bounded otherwise.

In our presentation, we first assume that feasible solutions
to the primal and the corresponding dual LP satisfying a
certain set of properties (properties (I1)–(I3) in Section 3) are
available. We then show how to iteratively improve these
solutions in Sections 2 and 3. In each iteration the gap
between the primal and the dual objective value is reduced
by a factor 1 − O(1/

√
n), where n is the number of variables.

The iterative improvement scheme leads to solutions that are
arbitrarily close to optimality. In Sections 4 and 5 we discuss
how to find the appropriate initial solutions and how to
extract an optimal solution from a sufficiently good solution
by rounding. Either or both these sections may be skipped in
a first course.

Remark 1. It is easy to deal with maximization instead
of minimization and with inequality constraints. Indeed,
maximize cTx is equivalent to minimize −cTx. Constraints of
type α1x1 + · · · + αnxn ≤ β can be replaced by α1x1 + . . . +

αnxn + γ = β with a new (slack) variable γ ≥ 0. Similarly,
constraints of type α1x1 + · · · + αnxn ≥ β can be replaced by
α1x1 + · · · + αnxn − γ = β with a (surplus) variable γ ≥ 0.

We consider another problem, the dual problem, which is

maximize bTy, subject to ATy + s = c, with variables

s ≥ 0 and unconstrained variables y. (2)

The vector y has m components and the vector s has
n components. We will call the original problem the primal
problem.

Claim 1 (Weak Duality). If x is a solution of Ax = b with x ≥ 0
and (y, s) is a solution of ATy + s = c with s ≥ 0, then

1. xTs = cTx − bTy, and
2. bTy ≤ cTx, with equality if and only if sixi = 0 for all is.

Proof. We multiply s = c − ATy with xT from the left and
obtain

xTs = xTc − xT(ATy) = cTx − (xTAT)y

= cTx − (Ax)Ty = cTx − bTy.

As x, s ≥ 0, we have xTs ≥ 0, and hence, cTx ≥ bTy.
Equality will hold if xTs = 0, or equivalently,


i sixi = 0.

Since si, xi ≥ 0,


i sixi = 0 if and only if sixi = 0 for all i. �

If x is a feasible solution of the primal and (y, s) is a feasible
solution of the dual, the difference cTx − bTy is called the
objective value gap of the solution pair. Thus, if the objective
values of a primal feasible and a dual feasible solution are
the same, then both solutions are optimal. Actually, from the
Strong Duality Theorem, if both primal and dual solutions are
optimal, then the equality will hold. We will prove the Strong
Duality Theorem in Section 5 (Theorem 2).

If the primal and the dual are both feasible, neither
of them can be unbounded as by Claim 1, the objective
value of all dual feasible solutions are less than or equal
to the objective values of any primal feasible solution. As a
consequence: If the primal and the dual are feasible, both are
bounded. If the primal is unbounded, the dual is infeasible,
and if the dual is unbounded, the primal is infeasible. It may
happen that both problems are infeasible. It is also true, that
if the primal is feasible and bounded, the dual is feasible
and bounded, and vice versa. This is a consequence of strong
duality.

We will proceed under the assumption that the primal as well
as the dual problem are bounded and feasible. This allows us
to concentrate on the core of the interior point method, the
iterative improvement scheme. We come back to this point in
Section 4.

Claim 1 implies, that if we are able to find a solution to the
following system of equations and inequalities

Ax = b, ATy + s = c, xisi = 0 for all i, x ≥ 0, s ≥ 0,

we will get optimal solutions of both the original primal and
the dual problem. Notice that the constraints xisi = 0 are
nonlinear and hence it is not clear whether we have made
a step towards the solution of our problem. The idea is now
to relax the conditions xisi = 0 to the conditions xisi ≈ µ (with
the exact form of this equation derived in the next section),
where µ ≥ 0 is a parameter. We obtain

(Pµ) Ax = b, ATy + s = c, xisi ≈ µ for all i, x > 0, s > 0.

We will show:

1. (initial solution) For a suitable µ, it is easy to find a solution
to the problem Pµ. This will be the subject of Section 4.

2. (iterative improvement) Given a solution (x, y, µ) to Pµ, one
can find a solution (x′, y′, s′) to Pµ′ , where µ′ is substantially
smaller than µ. This will be the subject of Sections 2 and
3. Applying this step repeatedly, we can make µ arbitrarily
small.

3. (final rounding) Given a solution (x, y, µ) to Pµ for
sufficiently small µ, one can extract an exact solution for
the primal and the dual problem. This will be the subject
of Section 5.

For the iterative improvement, it is important that x > 0
and s > 0. For this reason, we replace the constraints x ≥ 0
and s ≥ 0 by x > 0 and s > 0 when defining problem Pµ (see
Fig. 1).

Note that xisi ≈ µ for all i implies bTy − cTx ≈ nµ by
Claim 1. Thus, repeated application of iterative improvement
will make the gap between the primal and dual objective
values arbitrarily small.
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