
Please cite this article in press as: S. Zhou, et al., Two modified block-triangular splitting preconditioners for generalized saddle-point problems,
Computers and Mathematics with Applications (2017), http://dx.doi.org/10.1016/j.camwa.2017.06.004.

Computers and Mathematics with Applications ( ) –

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Two modified block-triangular splitting preconditioners for
generalized saddle-point problems
Sheng-Wei Zhou a,b,*, Ai-Li Yang b,c, Yu-Jiang Wu b,c

a College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
b School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China
c Key Laboratory of Applied Mathematics and Complex Systems, Gansu Province, Lanzhou 730000, PR China

a r t i c l e i n f o

Article history:
Received 11 August 2016
Received in revised form 19 May 2017
Accepted 1 June 2017
Available online xxxx

Keywords:
Generalized saddle-point problem
Preconditioner
Matrix splitting
Spectral property
Minimal polynomial

a b s t r a c t

For the generalized saddle-point problems, firstly, we introduce amodified generalized re-
laxed splitting (MGRS) preconditioner to accelerate the convergence rate of the Krylov sub-
space methods. Based on a block-triangular splitting of the saddle-point matrix, secondly,
we propose a modified block-triangular splitting (MBTS). This new preconditioner is easily
implemented since it has simple block structure. The spectral properties and the degrees of
theminimal polynomials of the preconditionedmatrices are discussed, respectively. More-
over, we apply the MGRS and the MBTS preconditioners to three-dimensional linearized
Navier–Stokes equations. Then we derive the quasi-optimal parameters of the MGRS
and the MBTS preconditioners for two and three-dimensional Navier–Stokes equations,
respectively. Finally, numerical experiments are illustrated to show the preconditioning
effects of the two new preconditioners.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the generalized saddle-point linear systems arising from the discretization of two-dimensional
linearized Navier–Stokes equations with the following special structure [1–3]

A u ≡

⎛⎝ A1 O B1
O A2 B2

−BT
1 −BT

2 C

⎞⎠(x1x2
y

)
=

( f1
f2
−g

)
≡ b, (1.1)

where A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 are nonsymmetric positive definite, B1 ∈ Rn1×m and B2 ∈ Rn2×m are of full column-
rank, and C ∈ Rm×m is symmetric positive semi-definite. These assumptions guarantee the existence and uniqueness of the
solution of the system of linear equations (1.1).

The generalized saddle point-problems arise in computational science and engineering applications, such as computa-
tional fluid dynamics, constrained optimization, parameter identification, mixed finite element approximation of second-
order elliptic problems or the Stokes equations; see [4–7] and the references therein. In the passed decades, as a class
of important iteration algorithms, Krylov subspace methods together with various preconditioners have been used to
approximate the solution of saddle-point problems. The frequently used preconditioners of Krylov subspace methods
are block diagonal preconditioners [8,9], block triangular preconditioners [10–15], constraint preconditioners [16–20],
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Hermitian and skew-Hermitian splitting (HSS) preconditioners [21–28], positive-definite and skew-Hermitian splitting (PSS)
preconditioners [29–32], dimensional splitting (DS) preconditioners [1,2,33] and so on.

For the generalized saddle-point problems (1.1), Cao et al. [34] presented a generalized relaxed splitting (GRS) precondi-
tioner of the form

PGRS =
1
α

⎛⎝ A1 O O
O αI O

−BT
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O A2 B2

O −BT
2 αI + C

⎞⎠ . (1.2)

To implement the GRS preconditioner for Krylov subspacemethods, we need to solve a system of linear equations at each
step of Krylov subspace methods, that is
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Using the following matrix factorization
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we can solve system of linear equations (1.3) as follows:

Algorithm 1.1. For a given vector r = [rT1 , r
T
2 , r

T
3 ]

T , we can compute the vector z = [zT1 , z
T
2 , z

T
3 ]

T by (1.4) from the following
steps:

(1) solve A1y1 = r1;
(2) solve (αI + C)y2 = r3 + BT

1y1;

(3) solve (A2 + B2(αI + C)−1BT
2)z2 = r2 − B2y2;

(4) solve (αI + C)z3 = r3 + BT
1y1 + BT

2z;
(5) z1 = y1 −

1
α
B1z3.

Comparing the GRS preconditioner with saddle-point matrix A , we have

RGRS = PGRS − A =
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The GRS preconditionermentioned above is effective for solving large and sparse nonsymmetric saddle-point linear systems.
However, there still exist some disadvantages in its implementation. From (1.5), we can see that both the (1, 3)-block and
the (3, 3)-block in RGRS tend to infinity as α → 0+, while the (1, 3)-block tends to −B1 and (3, 3)-block goes to infinity as
α → +∞. Therefore, we must choose appropriate parameter α to balance the diagonal and the off-diagonal parts, which is
a difficult problem. In addition, the solutions of the systems of linear equations appeared in the Step 3 of Algorithm 1.1 are
time consuming, since there exists (αI + C)−1 in the coefficient matrices of the linear systems.

In this paper we present a modified GRS (MGRS) preconditioner and a modified block-triangular splitting (MBTS)
preconditioner by constructing a block-triangular splitting of coefficient matrix A . The remainder of this paper is organized
as follows. In Section 2, we present the MGRS preconditioner for generalized saddle-point linear systems (1.1) and analyze
respectively the spectral property and the degree of the minimal polynomial of the MGRS preconditioned generalized
saddle-point matrix. We develop the MBTS preconditioner and discuss the spectral distribution and the degree of the
minimal polynomial of the MBTS preconditioned generalized saddle-point matrix in Section 3. We discuss the quasi-
optimal parameters of the MGRS and MBTS preconditioners for two-dimensional Navier–Stokes equations in Section 4. In
Section 5, we apply the MGRS and the MBTS preconditioners to three-dimensional Navier–Stokes equations and deduce the
corresponding quasi-optimal parameters. Finally, in Section 6, numerical experiments are presented to show the effects of
these new preconditioners.

2. The MGRS preconditioner and its spectral properties

According to the theory of preconditioning techniques [35], we know that the spectral distribution of the preconditioned
matrix relates closely to the convergence of Krylov subspace methods and favorable convergence rates are often associated
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