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a b s t r a c t

The weak Galerkin (WG) methods have been introduced in Mu et al. (2013, 2014), [14]
for solving the biharmonic equation. The purpose of this paper is to develop an algorithm
to implement the WG methods effectively. This can be achieved by eliminating local
unknowns to obtain a global system with significant reduction of size. In fact, this reduced
global system is equivalent to the Schur complements of the WGmethods. The unknowns
of the Schur complement of the WGmethod are those defined on the element boundaries.
The equivalence of theWGmethod and its Schur complement is established. The numerical
results demonstrate the effectiveness of this new implementation technique.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the biharmonic equation of the form

12u = f , in Ω, (1.1)

u = g, on ∂Ω, (1.2)
∂u
∂n

= gn on ∂Ω. (1.3)

For the biharmonic problem (1.1) with Dirichlet and Neumann boundary conditions (1.2) and (1.3), the corresponding
variational form is given by seeking u ∈ H2(Ω) satisfying u|∂Ω = g and ∂u

∂n |∂Ω = gn such that

(1u,1v) = (f , v), ∀v ∈ H2
0 (Ω), (1.4)

where H2
0 (Ω) is the subspace of H2(Ω) consisting of functions with vanishing value and normal derivative on ∂Ω .

Conforming finite elementmethods for this fourth order equation require finite element spaces to be subspaces ofH2(Ω)
or C1(Ω). Due to the complexity of construction of C1 elements, H2 conforming methods are rarely used in practice for
solving the biharmonic equation. Due to this reason, many nonconforming or discontinuous finite element methods have
been developed for solving the biharmonic equation [1–4]. Morley element [5,6] is a well known nonconforming element
for the biharmonic equation for its simplicity. C0 interior penalty methods were studied in [7,8]. In [9], a hp-version interior
penalty discontinuous Galerkin (DG) methods were developed for the biharmonic equation.

* Corresponding author.
E-mail addresses:mul1@ornl.gov (L. Mu), jwang@nsf.gov (J. Wang), xxye@ualr.edu (X. Ye).

http://dx.doi.org/10.1016/j.camwa.2017.06.002
0898-1221/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2017.06.002
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:mul1@ornl.gov
mailto:jwang@nsf.gov
mailto:xxye@ualr.edu
http://dx.doi.org/10.1016/j.camwa.2017.06.002


Please cite this article in press as: L. Mu, et al., Effective implementation of the weak Galerkin finite element methods for the biharmonic equation,
Computers and Mathematics with Applications (2017), http://dx.doi.org/10.1016/j.camwa.2017.06.002.

2 L. Mu et al. / Computers and Mathematics with Applications ( ) –

Weak Galerkin methods refer to general finite element techniques for partial differential equations and were first
introduced in [10] for second order elliptic equations. They are by designing using discontinuous approximating functions on
general meshes to avoid construction of complicated elements such as C1 conforming elements. In general, weak Galerkin
finite element formulation can be derived directly from the variational form of the PDE by replacing the corresponding
derivatives by the weak derivatives and adding a parameter independent stabilizer. Obviously, the WG method for the
biharmonic equation should have the form

(1wuh,1wv) + s(uh, v) = (f , v), (1.5)

where s(·, ·) is a parameter independent stabilizer. The WG formulation (1.5) in its primary form is symmetric and positive
definite.

The main idea of weak Galerkin finite element methods is the use of weak functions and their corresponding weak
derivatives in algorithm design. For the biharmonic equations, weak function has the form v = {v0, vb, vn} with v = v0
inside of each element and v = vb, ∇v · n = vn on the boundary of the element. In the weak Galerkin method introduced
in [11], v0 and vb are approximated by kth degree polynomials and vn is approximated by the polynomial of degree k − 1.
This method has been improved in [12] through polynomial degree reduction where vb and vn are both approximated by
the polynomials of degree k − 1.

Introductions of weak functions and weak derivatives make the WG methods highly flexible. It also creates additional
degrees of freedom associated with vb and vn. The purpose of this paper is to develop an algorithm to implement the WG
methods introduced in [11–14] effectively. This can be achieved by deriving the Schur complements of the WG methods
and eliminating the unknown u0 from the globally coupled systems. Variables ub and un defined on the element boundaries
are the only unknowns of the Schur complements which significantly reduce globally coupled unknowns. We prove that
the reduced system is symmetric and positive definite. The equivalence of theWGmethod and its Schur complement is also
established. The results of this paper is based on theweak Galerkinmethod developed in [12]. The theory can also be applied
to the WGmethod introduced in [11] directly.

The technique of eliminating the interior unknowns can also be found in hybridizable discontinuous Galerkin (HDG)
method [15]. The HDG method is a close relative of the WG method. The WG method and HDG method are equivalent for
the Poisson equation. However, the WG method differs from the HDG method for the second order elliptic equations with
nonconstant diffusion coefficient andmore sophisticated problems. These twomethods are different fundamentally. The key
element of HDG methods is numerical flux but the key element for WG method is weak derivatives. The concept of weak
derivatives will make it easy for applying WG methods to solve different PDE problems by simply replacing derivatives in
the weak formulations by weak derivatives.

The paper is organized as follows. A weak Laplacian operator is introduced in Section 2. In Section 3, we provide
a description for the WG finite element scheme for the biharmonic equation introduced in [12]. In Section 4, a Schur
complement formulation of the WG method is derived to reduce the cost in the implementation. Numerical experiments
are conducted in Section 5.

2. Weak Laplacian and discrete weak Laplacian

Let T be any polygonal or polyhedral domain with boundary ∂T . A weak function on the region T refers to a function
v = {v0, vb, vn} such that v0 ∈ L2(T ), vb ∈ H

1
2 (∂T ), and vn ∈ H−

1
2 (∂T ). The first component v0 can be understood as the

value of v in T and the second and the third components vb and vn represent v on ∂T and∇v ·n on ∂T , where n is the outward
normal direction of T on its boundary. Note that vb and vn may not necessarily be related to the trace of v0 and ∇v0 · n on
∂K traces should be well-defined.

Denote by W(T ) the space of all weak functions on T ; i.e.,

W(T ) =

{
v = {v0, vb, vn} : v0 ∈ L2(T ), vb ∈ H

1
2 (∂T ), vn ∈ H−

1
2 (∂T )

}
. (2.1)

Let (·, ·)T stand for the L2-inner product in L2(T ), ⟨·, ·⟩∂T be the inner product in L2(∂T ). For convenience, define G2(T ) as
follows:

G2(T ) = {ϕ : ϕ ∈ H1(T ),1ϕ ∈ L2(T )}.

It is clear that, for any ϕ ∈ G2(T ), we have ∇ϕ ∈ H(div, T ). It follows that ∇ϕ · n ∈ H−
1
2 (∂T ) for any ϕ ∈ G2(T ).

Definition 2.1 (Weak Laplacian). The dual of L2(T ) can be identified with itself by using the standard L2 inner product as the
action of linear functionals. With a similar interpretation, for any v ∈ W(T ), theweak Laplacian of v = {v0, vb, vn} is defined
as a linear functional1wv in the dual space of G2(T ) whose action on each ϕ ∈ G2(T ) is given by

(1wv, ϕ)T = (v0, 1ϕ)T − ⟨vb, ∇ϕ · n⟩∂T + ⟨vn, ϕ⟩∂T , (2.2)

where n is the outward normal direction to ∂T .
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