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a b s t r a c t

A fourth order compact finite difference scheme is proposed for solving general second
order steady partial differential equation (PDE) in two-dimension (2D) on geometries
having nonuniform curvilinear grids. In this work, the main efforts are focused not only
on nonorthogonal curvilinear grids but also on the presence of mixed derivative term
and nonhomogeneous derivative source terms in the governing equation. This is in turn
suitable for solving fluid flow and heat transfer problems governed by Navier–Stokes
(N–S) equations on geometries having nonuniform and nonorthogonal curvilinear grids.
The newly proposed scheme has been applied to solve general second order partial
differential equation having analytical solution and some pertinent fluid flow problems,
namely, viscous flows in a lid driven cavity such as trapezoidal cavity using nonorthogonal
grid, square cavity using distorted grid, complicated enclosures using curvilinear grid,
and mixed convection flow in a bottom wavy wall cavity. It is seen to efficiently capture
steady-state solutions of the N–S equations with Dirichlet as well as Neumann boundary
conditions. Detailed comparison data produced by the proposed scheme for all the test
cases are provided and compared with existing analytical as well as established numerical
results available in the literature. Excellent comparison is obtained in all the cases.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The second order partial differential equationswith nonhomogeneous derivative source terms are of common occurrence
in mathematical physics and several other areas of science and engineering such as option pricing in stochastic volatility
models, flow and heat transfer through porous media and in numerical mathematics. Moreover, convection–diffusion-
reaction equations under coordinate transformation on geometries having nonorthogonal grids produce a general second
order PDE as the mathematically generated mixed derivative term appeared to the transformed equations. Numerical
prediction of these kinds of equations plays a very important role in computational fluid dynamics (CFD) to simulate fluid
flow problems. In a nutshell all these PDEs can be categorized under the same umbrella of general second order PDE
with or without nonhomogeneous source terms. Therefore, accurate, stable and efficient difference representations of the
convection–diffusion-reaction equations are of vital importance. In particular, the second order central difference and the
upwind schemes have been the most popular ones because of their straightforwardness in application. For problems having
well-behaved solutions, they often yield quite good results on reasonable meshes while the solution may be of poor quality
for convection dominated flows if the mesh is not sufficiently refined. On the other hand, higher order discretization is
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generally associated with large non-compact stencils which increase the band-width of the resultant coefficient matrix. As a
consequence, the sparsity of thismatrix decreases resulting in a reduced rate of convergence of the iterative solver. However,
both the mesh refinement and increased matrix band-width i.e. decreased sparsity of the matrix invariably lead to a large
number of arithmetic operations. Thus, neither a lower order accurate scheme on a fine mesh nor a higher order accurate
one on a noncompact stencil seems to be computationally cost effective. In this regard, higher order compact (HOC) finite
difference schemes become important. Compact schemes characterize high accuracy solution on smaller stencils, so cost
effective with favorable numerical stability. In addition to these, Dirichlet and Neumann boundary conditions can be used
with less effort. In the spirit of accuracy and compactness, the high order compact schemes have seen increasing popularity in
solving computational and geophysical fluid dynamics problems over the past fewdecades. There are different approaches to
developHOC schemes. One of the approaches to achieve higher-order compactness [1–3] is based on Padé approximation [4],
which is an implicit relation between the derivatives and the functions at a nodal point around which the differences are
taken. It has become very popular and has been extensively used to solve problems of fluid dynamics [3,5–7] and wave
propagation [8,9]. These schemes exhibit spectral like resolution.

By combining virtues of compact discretization and Padé approximation, Sen [10] has developed a new family of implicit
HOC schemes for unsteady convection–diffusion equation with variable convection coefficients. With this philosophy in
mind Sen [11] proposed a generalized HOC formulation for parabolic problem with mixed derivative. In the recent past,
with the efforts to increase computational efficiency of HOC schemes, the development and implementation of HOC-ADI
algorithms [12–15] combine computational efficiency of ADI approach and high-order accuracy of HOC schemes.

In recent years, one of the other approaches is to use original differential equation to achieve higher order compactness
and has generated renewed interest to study incompressible viscous flows. Considering this idea a variety of specialized
techniques have been developed so far. In the work of [16], the authors derived a fourth order compact finite difference
scheme for 2D elliptic PDE with mixed derivative by considering the PDE itself as an auxiliary relation. Their work is limited
by considering diffusion coefficients as 1 and the coefficient of mixed derivative is less than 4. In an another work, Karaa [17]
solved 2D elliptic and parabolic equations with mixed derivative having variable coefficient by developing a fourth order
compact finite difference scheme using polynomial approximation, but was again restricted the values of the diffusion
coefficients as 1. However, out of the plethora of HOC schemes [12–24] designed so far for discretizing convection–diffusion
equation, a few can tackle the generalized second order PDE. Majority of these HOC approaches on 9-point compact stencil
are confined to uniform space grids. As such these schemes could not fully exploit the advantages associated with using
non-uniform grids, particularly that of mesh grading to resolve smaller scales in the regions of large gradients in the physical
domain. However, analysis of the developed schemes from the perspective of nonorthogonality properties of grids was not
studied, instead attentionwas primarily focused upon orthogonal grids on rectangular geometries. Recently, Kalita et al. [25],
Mancera [26], Spotz and Carey [27], Wang et al. [28] and Ge and Cao [29] have developed some HOC schemes on nonuniform
grids for the 2D convection–diffusion equations. Perusal of the literature of these kinds show that there exist many works
on the higher-order finite difference methods but a few have addressed on the generalized convection–diffusion–reaction
equation with or without mixed derivatives on curvilinear grids [30]. Off late, Pandit et al. [31,32] proposed higher order
compact scheme on geometries beyond rectangular. It is worthy to mention here that the developed higher order compact
scheme is strictly limited to its use with orthogonal curvilinear grids. However, for a wide range of problems of practical
relevance, the grid can be non orthogonal also.

The objective of the present work is twofold: (i) generalized formulation of the class of HOC schemes for nonorthogonal
curvilinear grids, and (ii) tackling of mixed derivative terms and nonhomogeneous derivative terms in the governing
equations via Padé approximations. To the best of authors’ knowledge, no studies have been found in the literature on the
formulation of HOC schemes using 9-point stencils with nonorthogonal curvilinear grids. The focus of this investigation is
to develop a general scheme that can be used for a wide range of problems. This work on the HOC schemes is motivated by
the need to solve accurately boundary value problems on nonuniform nonorthogonal curvilinear grids. However, for general
curvilinear geometries, it is often assumed that the grid spacing is uniform in the computational domain obtained by the
mapping of nonuniform curvilinear grids in the physical domain.

This paper is organized as follows: Section 2 presents proposed methodology in detail; Section 3 discusses algorithmic
implementations; Section 4 demonstrates accuracy and robustness of the proposed algorithms by means of a variety of
numerical results. Concluding remarks, finally, are presented in Section 5.

2. Basic formulations and discretization procedure

The general second order steady partial differential equation for a transport variable φ(x, y) defined in some continuous
domain Ω ⊂ R2 with nonhomogeneous derivative source terms and suitable boundary conditions can be written in
nondimensional form as:⎧⎪⎪⎨⎪⎪⎩
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