
Computers and Mathematics with Applications 73 (2017) 1900–1919

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On the approximation of electromagnetic fields by edge finite
elements. Part 2: A heterogeneous multiscale method for
Maxwell’s equations
Patrick Ciarlet Jr. a, Sonia Fliss a, Christian Stohrer b,∗
a POEMS, ENSTA ParisTech, CNRS, INRIA, Université Paris-Saclay, 828 Bd des Maréchaux, 91762 Palaiseau Cedex, France
b IANM 1, Karlsruhe Institute of Technology, Englerstrasse 2, 76131 Karlsruhe, Germany

a r t i c l e i n f o

Article history:
Received 5 October 2016
Received in revised form 31 January 2017
Accepted 27 February 2017
Available online 22 March 2017

Keywords:
Numerical homogenization
Maxwell’s equations
Heterogeneous multiscale method
Edge finite elements
Two-scale convergence
T -coercivity

a b s t r a c t

In the second part of this series of papers we consider highly oscillatory media. In this
situation, the need for a triangulation that resolves all microscopic details of the medium
makes standard edge finite elements impractical because of the resulting tremendous
computational load. On the other hand, undersampling by using a coarse mesh might
lead to inaccurate results. To overcome these difficulties and to improve the ratio
between accuracy and computational costs, homogenization techniques can be used. In
this paper we recall analytical homogenization results and propose a novel numerical
homogenization scheme for Maxwell’s equations in frequency domain. This scheme
follows the design principles of heterogeneousmultiscalemethods.We prove convergence
to the effective solution of themultiscaleMaxwell’s equations in a periodic setting and give
numerical experiments in accordance to the stated results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As in the first part [1] of the series entitled ‘‘On the Approximation of Electromagnetic Fields by Edge Finite Elements’’
we study the numerical approximation of electromagnetic fields governed by Maxwell’s equations. Here, we are interested
in materials that oscillate on a microscopic length scale η much smaller than the size of the computational domain. Such
materials are modeled by their electric permittivity tensor εη and their magnetic permeability tensor µη . The microscopic
nature of these materials properties are indicated by the superscript η.

Our goal is to approximate the macroscopic behavior of the electric field eη . To obtain a reliable approximation of it
using standard edge finite elements, the microscopic details in µη and εη need to be resolved. This leads to an enormous
number of degrees of freedom and might result in infeasibly high computational costs. Therefore, more involved methods
are needed. A standard approach consists in replacing the multiscale tensors µη and εη with effective ones not depending
on the microscale, such that the macroscopic properties of the unknown electric field remain unchanged. While mixing
formulas, see [2] and the references therein, are often used in physics and engineering, homogenization results are more
common in the mathematical literature. In the seminal book [3] homogenization results for elliptic equations involving a
curl-curl operator were proven. This proof relies on a div-curl lemma and uses the technique of compensated compactness.
Homogenization results of time-dependent Maxwell’s equations can be found e.g. in [4] and in [5,6]. In the later references
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the notion of two-scale convergence was used to justify rigorously the homogenization process. Using similar techniques
in a frequency domain setting, homogenization for an electromagnetic scattering problem in the whole space by a
multiscale obstacle was achieved in [7]. The interest from a computational point of view of homogenizing microstructure
inhomogeneities to avoid the need for excessive grid refinement has often been pointed out, see this non exhaustive list
of references for instance [8–13]. In this article, we give a slightly different homogenization result based on two-scale
convergence in the second part of Section 2. This is the basis upon which our numerical homogenization scheme is built.

The term ‘‘numerical homogenization’’ is used for numerical methods that approximate the effective or homogenized
solution of a multiscale equation without knowing the exact effective parameters. The most fundamental numerical
homogenization methods precompute numerically effective parameters not depending on the microscale. In a second
step, an approximated effective equation can be solved with standard methods. In [14] two such methods for Maxwell’s
equations are compared. The first one is based on the homogenization results as described above, while the second one is
based on a Floquet–Bloch expansion, see [15]. While such methods are quite accessible, their range of application is usually
limited to periodic settings without straightforward generalizations to more involved settings. In addition the influence of
the numerical discretization error in the approximation of the effective parameters on the overall solution is hardly ever
considered.

Novel numerical homogenization schemes, such as e.g. Multiscale Finite Element Methods (MsFEM) [16,17] and
Heterogeneous Multiscale Method (HMM) [18,19] do not rely on a priori computation of the effective parameters
to approximate the effective behavior. In this paper we follow the HMM framework to propose a novel numerical
homogenization scheme for Maxwell’s equations. A detailed description of our scheme can be found in Section 3. In [20,21]
an HMM scheme was applied to an Eddy current problem, but without rigorous convergence proof. There, the macro
problem, which involves the curl-operator, was discretized with Lagrange finite elements and the introduction of a
stabilization term was needed. By contrast, we use edge finite elements for the macro solver and prove an abstract a
priori error bound in Section 4. Very recently another HMM scheme for Maxwell’s equations was proposed in [22], where
in similarity with our scheme, edge finite elements are used for the macro solver. Nevertheless, the two methods differ
from each other. First of all, in [22] a problem with non-vanishing conductivity was considered, whereas in this article
the conductivity equals zero. As a consequence, the Maxwell’s equations are not coercive in our case. To overcome this
additional difficulty we use the notion of T -coercivity [23,24]. Secondly, their method relies on a divergence regularization
and thus the micro problem for the permeability differs from the micro problems we use. We will highlight the similarities
and differences of these two HMM methods in more detail in the course of this article. In Section 5 we illustrate how to
apply the general method and the error bounds to concrete settings. Numerical experiments corroborating the theoretical
results are presented in Section 6.

1.1. Notation

Whenever possible we follow the notations of [1]. In the following we repeat the most important ones for the self-
containment of this article and add some complementary ones. LetO ⊂ R3 be an open, bounded connected setwith Lipschitz
boundary ∂O in R3, i.e. O is a domain. The standard orthonormal basis of R3 is denoted by (ek)k=1,2,3 and the d× d-identity
matrix (with d = 2 or 3) by Id.

For a sufficiently smooth vector valued function v, we write curl v to denote its curl. If the function depends on two
variables and the curl is only takenwith respect to one of them,we indicate this using subscripts. E.g. for v : (x, y) → v(x, y)
wewrite curlxv, resp. curlyv, for the curl of v taken with respect to the first, resp. the second variable. For other differential
operators we use the same notation, e.g. divy v denotes the divergence of v with respect to its second argument.

We use the usual notation Hℓ(O) for Sobolev spaces with the standard convention that L2(O) = H0(O). In addition we
will denote their vector-valued counterparts in bold face, e.g.Hℓ(O) :=


Hℓ(O)

3. By (·|·)ℓ,O , respectively ∥·∥ℓ,O , we denote
the standard scalar product, resp. the standard norm in Hℓ(O) or Hℓ(O). Furthermore, we will use the notation H(curl; O)
for L2(O)-measurable functions whose curl lays in the same function space. Its norm is given by

∥v∥curl,O =


(v|v)0,O + (curl v|curl v)0,O

1/2
.

The subspace of functions in H(curl; O) with vanishing tangential component on the boundary ∂O is denoted by
H0(curl; O). Note that H0(curl; O) is the closure of D(O) in H(curl; O). While for a cuboidal domain O periodic boundary
conditions are widely used for Sobolev spaces, they are less common for H(curl; O). Similarly to H0(curl; O), we let
Hper(curl; O) be the closure of C∞

per(O) in H(curl; O), where C∞
per(O) denotes the space of smooth O-periodic functions

restricted to O. We proceed similarly to define H(div; O) for L2(O)-measurable functions whose divergence lays in the
same function space, and the ad hoc subspaces H0(div; O) and Hper(div; O) (replace tangential component by normal
component in the previous definition). In this article, periodic boundary conditions are mainly used for the centered unit
cube Y = (−1/2, 1/2)3 and its shifted and scaled version given by

Yδ(x) := x + (−δ/2, δ/2)3

for δ > 0 and x = (x1, x2, x3)T ∈ R3.
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