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a b s t r a c t

Cyclic pentadiagonal matrices with Toeplitz structure have received tremendous attention
in recent years. In the current paper, we present a block upper triangular transformation of
the cyclic pentadiagonal Toeplitz matrices. By using the transformation, the determinant
of an n-by-n cyclic pentadiagonal Toeplitz matrix can be readily evaluated since one just
needs to compute the determinant of a 4-by-4matrix obtained from the transformation. In
addition, an efficient numerical algorithm of O(n) is derived for computing nth order cyclic
pentadiagonal Toeplitz determinants. Some numerical experiments are given to show the
performance of the proposed algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and objectives

In the current paper, we mainly consider the determinant of a cyclic pentadiagonal Toeplitz matrix of the form

A =
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∈ Rn×n, (1.1)

where a, b, c , d, e ∈ R, and we assume that c ≠ 0 and n ≥ 5. In fact, similar results can be obtained by the use of the
argument given in Section 2 if c = 0.

From practical point of view, pentadiagonal matrices and cyclic pentadiagonal matrices frequently arise from boundary
value problems (BVPs) involving 4th-order derivatives [1,2], and, computational algorithms for the determinants are linked
to the problem of obtaining efficient test for the existence of unique solutions of the PDEs [3,4]. Usually, the determinant of
a square matrix can be computed by the well-known Laplace formula [5]. However, algorithms based on such formula for
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large matrices may be time-consuming due to the number of required operations grows quickly. Therefore, more involved
techniques have been developed for the determinant evaluation.

In order to evaluate the determinant of the cyclic pentadiagonal matrices, some authors have devised numerical (or
symbolic) algorithms recently, see [6–8]. The main objective of this paper is to develop an efficient numerical algorithm for
the determinant of an n-by-n cyclic pentadiagonal Toeplitz matrix. Recent developments of algorithms for the determinants
and permanents of other related matrices, see e.g. [9–16].

The present paper is organized as follows. The main results are given in the next section. In Section 3, we give the results
of some numerical experiments to show the performance of our algorithm. Finally we make some concluding remarks in
Section 4.

2. Main results

In this section, we first present an approach for the determinant of a cyclic pentadiagonal Toeplitz matrix. Based on some
elementary optimization methods, we then improve the proposed approach and develop an efficient numerical algorithm
with the cost of 7n + O(log n) for evaluating nth order cyclic pentadiagonal Toeplitz determinants.

2.1. An approach based on block upper triangular transformation

Let {C1, C2, . . . , Cn} be the column vectors of thematrix A as in (1.1). If we successively interchange the first two columns
C1 and C2 with other columns to make them as the last two columns, we then obtain a nearly lower triangular Toeplitz
matrix T with the column vectors {C3, C4, . . . , Cn, C1, C2}, thus

T =
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∈ Rn×n. (2.1)

Since we made 2n − 2 column interchanges in the matrix reordering above, we readily obtain the following relation:

det(A) = det(T ).

We now consider transforming the matrix T (2.1) into a 2-by-2 block upper triangular matrix of the form:

U =


c · In−4 U12

0 U22


∈ Rn×n, (2.2)

where U12 and U22 are matrices of size (n − 4)-by-4 and 4-by-4, respectively. Below, we show that the above matrix can be
obtained from the original matrix T and a suitable choice ωi+1,i, ωi+2,i, ωi+3,i, and ωi+4,i of the following matrices:

Ω1 =



1
ω21 1
ω31 1
ω41 1
ω51 1

. . .

1


, Ωi =



Ii−1
1

ωi+1,i 1
ωi+2,i 1
ωi+3,i 1
ωi+4,i 1

In−i−4

 ,

for i = 2, 3, . . . , n − 4. Here, Ii−1 and In−i−4 are identity matrices of order i − 1 and n − i − 4. For the sake of illustration,
we consider the case n = 7 to show the transformation. From (2.1) and setting ω21 = −a/c , ω31 = −d/c , ω41 = −b/c , and
ω51 = −e/c , we have

Ω1T =



1 0 0 0 0 0 0
−a/c 1 0 0 0 0 0
−d/c 0 1 0 0 0 0
−b/c 0 0 1 0 0 0
−e/c 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





c 0 0 e b d a
a c 0 0 e b d
d a c 0 0 e b
b d a c 0 0 e
e b d a c 0 0
0 e b d a c 0
0 0 e b d a c
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