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a b s t r a c t 

We study the problem of selecting a restricted number of shares included in a stock market index, such 

that the portfolio resembles the index as closely as possible. To measure the difference between the 

portfolio and the index, referred to as the tracking error, we use a quadratic function with the covari- 

ance matrix of the index returns as coefficient matrix. The problem is proved to be strongly NP-hard, 

and we give theoretical evidence that continuous relaxations of mixed integer quadratic programming 

(MIQP) formulations are likely to produce poor lower bounds on the tracking error. For fast computation 

of near-optimal portfolios, we demonstrate how the best-extension-by-one construction heuristic can be 

designed to run in time bounded by a fourth order polynomial. We also show that the running time of 

one iteration of the best-exchange-by one improvement heuristic is of the same order. Computational ex- 

periments applied to real-life stock market indices show that in instances where an index of less than 500 

assets is to be tracked by a portfolio of 10 assets, a commercially available MIQP solver fails to reduce the 

integrality gap below 94% in 30 CPU-minutes. In contrast, the construction heuristic under study needs 

less than 30 CPU-seconds to produce a portfolio of 100 assets tracking an index of nearly 20 0 0 assets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In fund management, where wealth from numerous investors 

is managed, different strategies are employed. Making an invest- 

ment is in itself a risky affair as one is not guaranteed of a gain on 

wealth. However, managers have the task of making decisions on 

how to achieve this goal while avoiding losses. 

The objective of active fund management is to identify stocks 

(assets) that do considerably better than the market in general. 

While the expected return from the fund is higher than from the 

market at large, also the probability of substantial losses is rela- 

tively high. In contrast, a passive fund manager aims to compose a 

portfolio that brings approximately the average market return. The 

expected return from the portfolio is therefore lower than the one 

from active fund management, whereas passive fund management 

involves lower risk. Active and passive fund managers can there- 

fore be said to have different attitudes to risk, with the passive 

manager being the most risk averse. 

Passive fund management is commonly implemented by com- 

posing funds that simulate a chosen benchmark, typically a stock 

market index. This strategy is referred to as index tracking . A fund, 

or portfolio, that tracks a stock market index is composed by a 
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selection of, typically few, shares that are present in the index. 

In theory, the portfolio may contain all the stocks in the tracked 

benchmark index, in their respective proportions, as the index. 

Such a full replication approach is however neither practical nor 

cost effective. Besides lower risks, index tracking has several cost- 

saving advantages when compared to active fund management. 

Management costs involved in stock picking and market timing can 

be considerable for active funds. Especially when the number of 

stocks is restricted, administration costs of index tracking portfo- 

lios can be kept low. Cutting costs is therefore an important moti- 

vation for designing index trackers containing only a small subset 

of the assets in a tracked stock market index. 

Portfolio size being determined, choosing which stocks to in- 

clude becomes a problem of vital importance to the passive fund 

manager. Some measure of difference between a portfolio and the 

benchmark which it mimics is referred to as the tracking error , 

and the problem becomes to find a portfolio minimizing this mea- 

sure. Different formulations of the index tracking error are pro- 

posed, all of which are functions of the weights of each asset in 

the index and the tracking portfolio, respectively. Statistical param- 

eters related to the stock returns are typical parameters of the var- 

ious definitions of the tracking error, which are briefly reviewed in 

Section 2.1 . 

When the portfolio minimizing the tracking error is to be 

found, the restriction in portfolio size is known to represent a seri- 

ous computational challenge. Regardless of the tracking error def- 
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inition and what additional constraints that apply, the cardinality 

constraint is notorious for being the source of high computational 

costs. In Section 2.2 , we review some models from the scientific lit- 

erature for minimizing the tracking error, and discuss briefly their 

computational complexity and suggested solution methods. 

The objective of the current work is to present new theo- 

retical results and computational procedures for cardinality con- 

strained index tracking. To this end, we first give a straightfor- 

ward mathematical formulation of the problem. Our model has a 

convex quadratic objective function representing the tracking er- 

ror to be minimized, binary variables representing the selection of 

stocks, and continuous variables representing the stock weights in 

the portfolio. Besides the cardinality constraint, we only introduce 

logical constraints expressing that the weight of unselected stocks 

must be zero, and that the sum of all weights must be one. We 

verify theoretically that even a plain index tracking model of this 

kind has unfavorable computational properties, and show that ex- 

act algorithms have to evaluate a large proportion of all feasible 

portfolios. Further, we formulate fast construction and improve- 

ment heuristics for the problem, and give experimental evidence 

for their applicability. 

The remainder of the text is organized as follows: the literature 

review in the next section, we present in Section 3 a theoretical 

analysis of the computational properties of the model. Inexact so- 

lution methods are developed in Section 4 and evaluated experi- 

mentally in Section 5 , while conclusions are drawn in Section 6 . 

Throughout the text, we write vectors and matrices in boldface 

letters. If N is a finite set, notation x ∈ R 

N ( x ∈ R 

N + ) says that x is 

a vector of (nonnegative) real numbers corresponding to the ele- 

ments of N . For i ∈ N and M ⊆N , we let x i denote the component 

of x corresponding to i , and we let x M 

denote the vector with 

components x j , where j ∈ M . If p is a real number, p N ∈ R 

N de- 

notes the vector with one component with value p for each el- 

ement in N , and we write p in place of p N whenever it is clear 

from the context to what set the components correspond. A sub- 

matrix of A ∈ R 

N 1 ×N 2 , where N 1 and N 2 are finite sets, consisting 

of the rows corresponding to M 1 ⊆N 1 and the columns correspond- 

ing to M 2 ⊆N 2 , is denoted A M 1 M 2 
. If M 1 = { k } ( M 2 = { k } ), then no- 

tation A kM 2 
( A M 1 k 

) is used, while the element in row i ∈ N 1 and 

column j ∈ N 2 is denoted a ij . For integers m and n , we also make 

use of notations x ∈ R 

n and A ∈ R 

m ×n , meaning that x and A are, 

respectively, a real vector of length n , and a real matrix with m 

rows and n columns. Vector e i ∈ R 

n is the unit vector with a 1- 

entry in position i . Matrices and vectors superscripted by T give 

the corresponding transpose. Notations analogous to all the above 

are adopted for vectors and matrices over other number fields. 

2. Literature review 

2.1. Tracking error definitions 

Roßbach and Karlow (2011) consider a multi-period model, and 

formulate the tracking error in time period t as | R t − v t | , where R t 
and v t denote the returns of the tracking portfolio and the index, 

respectively, in period t , given as the sum of the total weights of 

the assets multiplied by their respective returns in period t . Aver- 

aged over the time periods t = 1 , . . . , T , this results ( Roßbach and 

Karlow, 2011 ) in the error: 1 
T 

∑ T 
t=1 | R t − v t | . 

Rudolf et al. (1999) also consider the tracking error defined as 

a function of the absolute values of historical differences between 

the returns from the tracked index and the tracking portfolio. They 

also analyze a version including only time periods where the port- 

folio return is below the index return, and suggest to replace the 

unit norm deviation by the maximum norm. These approaches 

contrast the traditional ( Roll, 1992 ) definition of the tracking er- 

ror as (the square of) the Euclidean norm of the difference over 

time. 

As Beasley et al. (2003) remark, other p -norms can also be ap- 

plied to the return differences. While the unit norm ( p = 1 ) implies 

that all deviations have equal weight, the Euclidean norm ( p = 2 ) 

says that more emphasis is on large deviations. Taking this to the 

extreme, the maximum norm ( p = ∞ ) corresponds to neglecting 

all but the largest deviation. 

Rather than including all return values observed in a given 

time interval, Jansen and van Dijk (2002) suggest to aggregate 

the observations by estimating the covariance matrix, Q , of the 

stock returns. Their formulation of the tracking error thus be- 

comes (x − w ) T Q (x − w ) , where x and w are the vectors con- 

sisting of the weights of all stocks in, respectively, the tracking 

portfolio and the index. Such a tracking error function estimates 

the variance of the return differences in future time periods. As 

Coleman et al. (2006) remark, the tracking error definition in 

Jansen and van Dijk (2002) is mathematically more appealing as 

it is convex, and can be used in financial interpretations on the as- 

sumption that the covariance matrix is accurate for future returns. 

As observed by Rudolf et al. (1999) and Konno and Ya- 

mazaki (1991) , there exist similarities in performance when us- 

ing the different approaches. Roßbach and Karlow (2011) present 

a comparative study of these different approaches. 

In this work, we adopt the tracking error definition 

f (x ) = (x − w ) T Q (x − w ) , 

giving us a convex quadratic objective function to be minimized, 

provided that the selection of stocks is determined. 

2.2. Models and solution methods 

When a cardinality constraint restricting the number of stocks 

is introduced, the problem of optimizing the composition of a port- 

folio tends to become NP-hard ( Moral-Escudero et al., 2006; Ruiz- 

Torrubiano and Suárez, 2009; Shaw et al., 2008 ). This means that 

exact solutions to instances of realistic sizes are computationally 

intractable, and thus inexact solution methods are the only practi- 

cal ones. 

Let N denote the set of stocks in the benchmark index, and 

let m denote the maximum number of stocks in the portfolio. 

Jansen and van Dijk (2002) and Coleman et al. (2006) present two 

different approaches to dealing with the discontinuity introduced 

by the cardinality constraint |{ i ∈ N : x i > 0}| ≤ m . 

Jansen and van Dijk (2002) focus on minimizing the tracking 

error with a relatively small number of stocks. When n = | N| is 

relatively small, it is argued that because lim p→ 0 + x 
p 
i 

= 1 , |{ i ∈ N : 

x i > 0}| can be approximated by the continuous function 

∑ n 
i =1 x 

p 
i 

for 

some parameter p > 0. 

Building on Jansen and van Dijk (2002) , Coleman et al. 

(2006) approximate the portfolio cardinality |{ i ∈ N : x i > 0}| by a 

continuously differentiable non-convex function �i ∈ N h λ( x i ), wher e 

h λ(x i ) = λx 2 
i 

if x i ≤
√ 

1 
λ

and h λ(x i ) = 1 , otherwise. When the pa- 

rameter λ is assigned a large value, it is argued that the approxi- 

mation becomes close. Further improvements in terms of an objec- 

tive function that also is differentiable is achieved by refining this 

idea. 

Shaw et al. (2008) propose a model where the objective func- 

tion combines the tracking error with a linear term representing 

expected revenues. In addition, the model contains a set of arbi- 

trary linear side constraints, as well as lower and upper bounds on 

each index weight. The resulting model is solved by a procedure 

based on Lagrangian relaxation. 

Ruiz-Torrubiano and Suárez (2009) define the tracking error in 

terms of a quadratic function of the asset weights. In addition to 
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