
Computers and Operations Research 90 (2018) 208–220

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Exact approaches for the knapsack problem with setups

Fabio Furini a , Michele Monaci b , ∗, Emiliano Traversi c

a Université Paris Dauphine, PSL Research University, LAMSADE, 75016 Paris, France
b DEI, University of Bologna, 40136 Bologna, Italy
c Laboratoire d’Informatique de Paris Nord, Université de Paris 13, 93430 Villetaneuse, France

a r t i c l e i n f o

Article history:

Received 1 February 2017

Revised 13 September 2017

Accepted 18 September 2017

Available online 20 September 2017

Keywords:

Knapsack problems

Column generation

Relaxations

Branch-and-bound algorithms

Computational experiments

a b s t r a c t

We consider a generalization of the knapsack problem in which items are partitioned into classes, each

characterized by a fixed cost and capacity. We study three alternative Integer Linear Programming formu-

lations. For each formulation, we design an efficient algorithm to compute the linear programming relax-

ation (one of which is based on Column Generation techniques). We theoretically compare the strength

of the relaxations and derive specific results for a relevant case arising in benchmark instances from the

literature. Finally, we embed the algorithms above into a unified implicit enumeration scheme which is

run in parallel with an improved Dynamic Programming algorithm to effectively solve the problem to

proven optimality. An extensive computational analysis shows that our new exact algorithm is capable of

efficiently solving all the instances of the literature and turns out to be the best algorithm for instances

with a low number of classes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The classical knapsack problem (KP) is one of the most famous

problems in combinatorial optimization. Given a knapsack capacity

C and a set N = { 1 , . . . , n } of items, the j -th having a profit p j and

a weight w j , KP asks for a maximum profit subset of items whose

total weight does not exceed the capacity. KP can be formulated

using the following Integer Linear Program (ILP):

max

{ ∑

j∈ N
p j x j :

∑

j∈ N
w j x j ≤ C, x j ∈ { 0 , 1 } , j ∈ N

}

(1)

where each variable x j takes value 1 if and only if item j is inserted

in the knapsack.

KP is NP-hard, although in practice fairly large instances can be

solved to optimality within low running time. The reader is re-

ferred to Martello and Toth (1990) and Kellerer et al. (2004) for

comprehensive surveys on applications and variants of this prob-

lem.

In this paper we consider a generalization of KP arising when

items are associated with operations that require some setup time

to be performed. In particular, there is a given set I = { 1 , . . . , m } of

classes associated with items, and each item j belongs to a given

class t j ∈ I . A positive setup cost f i is incurred and a positive setup

∗ Corresponding author.

E-mail addresses: fabio.furini@dauphine.fr (F. Furini), michele.monaci@unibo.it

(M. Monaci), emiliano.traversi@lipn.univ-paris13.fr (E. Traversi).

capacity s i is consumed in case items of class i are selected in the

solution. Without loss of generality, we assume that all input pa-

rameters have integer values. The resulting problem is known in

the literature as knapsack problem with setup (KPS).

KPS has been first introduced in the literature by Lin (1998) in a

survey of non-standard knapsack problems worthy of investigation.

In particular, this variant of KP was listed as it finds many prac-

tical application, e.g., when industries that produce several types

of products must prepare some machinery related to the produc-

tion of a certain class of products. In addition, it appears as a sub-

problem in scheduling capacitated machines, and may be used to

model resource allocation problems. Guignard (1993) designed a

Lagrangean Decomposition for the setup knapsack problem, that

may be seen as a variant of KPS in which the setup cost of each

class and the profit associated to each item can take also nega-

tive values. The version of the problem in which only the setup

cost for each class is taken into account, usually denoted as fixed

charge knapsack problem, was addressed by Akinc (2006) and

Altay et al. (2008) . In particular, the former presents an exact

algorithm based on a branch-and-bound scheme, while the lat-

ter uses cross decomposition to solve the case in which items

can be taken at a fractional level. The problem addressed by

Michel et al. (2009) is the multiple-class integer knapsack problem,

a special case of KPS in which item weights are assumed to be a

multiple of their class weight, and lower and upper bounds on the

total weight of the used classes are imposed. For this problem, dif-

ferent ILP formulations were introduced and an effective branch-

https://doi.org/10.1016/j.cor.2017.09.019

0305-0548/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2017.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.09.019&domain=pdf
mailto:fabio.furini@dauphine.fr
mailto:michele.monaci@unibo.it
mailto:emiliano.traversi@lipn.univ-paris13.fr
https://doi.org/10.1016/j.cor.2017.09.019

F. Furini et al. / Computers and Operations Research 90 (2018) 208–220 209

and-bound algorithm was designed. A Branch-and-Bound algo-

rithm for KPS was given in Yang and Bulfin (2009) . This algorithm

was tested on instances with up to 10 0 0 0 variables, and turned out

to be effective mainly for instances where profits and weights are

uncorrelated – while it ran out of memory for several large corre-

lated instances. Motivated by an industrial application in a pack-

ing industry, KPS was studied by Chebil and Khemakhem (2015) ;

this article presented a basic dynamic programming scheme and

an improved version of the algorithm, with a reduced storage re-

quirement, that proved able to solve instances with up to 10 0 0 0

items and 30 classes. Recently, KPS has also been addressed in

Pferschy and Scatamacchia and Della Croce et al. (2017) . The for-

mer introduces a new dynamic programming algorithm, gives neg-

ative results on the approximability of the problem in the general

case, and considers some special cases for which fully polynomial

time approximation schemes exist. The latter presents an exact ap-

proach for KPS based on the solution of several ILP models that

turn out to be easy to solve in practice. Computational experiments

reported in Della Croce et al. (2017) , both on instances from the

literature and on a large set of new randomly generated problems,

show that, for many classes of problems, this approach is the state-

of-the-art for the exact solution of KPS. For what concerns approx-

imate solutions, we mention a recent paper by Khemakhem and

Chebil (2016) , where a tree search combination heuristic is pre-

sented. The algorithm is based on the definition of a truncated tree

search, where at each level only potentially good nodes are candi-

dates for further exploration, and is tested on the instances intro-

duced in Chebil and Khemakhem (2015) .

Paper contributions The contribution of the paper is twofold, as

it embraces both theoretical and computational aspects. We de-

velop linear-time algorithms for the optimal solution of the Lin-

ear Programming (LP) relaxation of two Integer Linear Program-

ming formulations of KPS. Computational experiments show that

these algorithms produce a considerable speedup with respect to

the direct use of a commercial LP solver. In addition, we derive

for the first time an effective column generation approach to solve

a KPS formulation with a pseudo-polynomial number of variables.

Finally, we exploit these fast and strong relaxations within an uni-

fied branch-and-bound(-and-price) scheme. By reducing the space

complexity of the Dynamic Programming algorithm proposed in

Chebil and Khemakhem (2015) , we managed to improve its com-

putational performance. Since the new exact algorithms are par-

ticularly effective on complementary subsets of KPS instances, in

order to obtain the best computational performance, we propose a

parallel algorithm which exploits the qualities of all the new ex-

act algorithms. We test our new exact algorithms on a large set

of instances proposed in the literature and on a new set of larger

randomly generated problems. The outcome of our experiments is

that the new approaches are competitive with the state-of-the-art

exact algorithms for KPS, though they do not require the use of an

ILP solver. In addition, we show that on some classes of instances,

a considerable speedup may be obtained with respect to the other

algorithms proposed so far in the literature.

In the rest of the paper we will denote by n i the number of

items in each class i ∈ I . We assume that n i ≥ 2 for some class

i ∈ I and m > 1; otherwise, one could associate the setup capac-

ity and cost to the items, yielding a KP. Without loss of general-

ity, we assume that items are sorted according to their class, i.e.,

class i includes all items j ∈ K i := [αi , β i], where αi =

∑ i −1
k =1

n k + 1

and βi = αi + n i − 1 . Moreover, we assume that, within each class,

items are sorted according to non-increasing profit over weight ra-

tio, i.e.,

p j

w j

≥ p j+1

w j+1

j = αi , . . . , βi − 1 ; i ∈ I.

To avoid pathological situations, we also assume that the cost of

each class i ∈ I is smaller than the total profit of its items, i.e.,

f i <

∑

j∈ K i p j , since otherwise this class will never be used in any

optimal solution. We assume that not all items (and classes) can

be selected, i.e.,
∑

j∈ J w j +

∑

i ∈ I s i > C; otherwise a trivial optimal

solution is obtained by taking all items and classes. Finally, we as-

sume that each item j ∈ N satisfies w j + s t j ≤ C; otherwise item j

cannot be inserted in any feasible solution, and can be removed

from consideration.

Let us introduce a first numerical example, called Example 1

and reported in Fig. 1 . The optimal solution value of Example 1 is

132 and the corresponding solution takes both items of the second

class. This example will be used to demonstrate some properties

of the KPS models in the following sections.

The paper is organized as follows: in Section 2 we introduce al-

ternative formulations of KPS and discuss the properties of the as-

sociated linear programming relaxations. In Section 3 we give effi-

cient combinatorial algorithms for solving the LP relaxations of the

models; these algorithms are embedded into an enumerative al-

gorithm described in Section 4 . In Section 5 we discuss some im-

provements to the dynamic programming algorithm proposed in

Chebil and Khemakhem (2015) . Section 6 describes a relevant spe-

cial case of KPS and shows the additional properties of the mod-

els in this case. Finally, Section 7 reports an extensive computa-

tional experience on the solution of the ILP models (and their re-

laxations) using our algorithms, and compares their performance

with other approaches from the literature, and Section 8 draws

some conclusions.

2. Integer linear programming models for KPS

In this section we introduce alternative formulations for KPS

and discuss the relation between the associated linear program-

ming relaxations. These formulations and the associated LP relax-

ations will be computationally tested in Section 7 .

2.1. Model M1

A natural model for KPS is obtained by introducing x j variables

that have the same meaning as in (1) , and decision variables y

associated with item classes: in particular, each variable y i takes

value 1 if and only if some item of class i is included in the solu-

tion. The resulting model is as follows

max
∑

j∈ N
p j x j −

∑

i ∈ I
f i y i (2)

∑

j∈ N
w j x j +

∑

i ∈ I
s i y i ≤ C (3)

x j ≤ y t j j ∈ N (4)

x j ∈ { 0 , 1 } j ∈ N (5)

y i ∈ { 0 , 1 } i ∈ I. (6)

The objective function (2) maximizes the total profit of the se-

lected items minus the setup cost of the used classes, whereas

constraint (3) takes into account that the sum of the item weights

and the class setups must not exceed the capacity. Inequalities

(4) force a class to be used whenever some item of the class is se-

lected. Finally, (5) –(6) impose all variables to be binary. It is worth

mentioning that constraints (4) - (5) and the objective function force

the y variables to be binary; thus, in principle, constraints (6) are

Download English Version:

https://daneshyari.com/en/article/4958870

Download Persian Version:

https://daneshyari.com/article/4958870

Daneshyari.com

https://daneshyari.com/en/article/4958870
https://daneshyari.com/article/4958870
https://daneshyari.com

