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a b s t r a c t 

We present a linear programming based algorithm for a class of optimization problems with a multi- 

linear objective function and affine constraints. This class of optimization problems has only one objective 

function, but it can also be viewed as a class of multi-objective optimization problems by decomposing its 

objective function. The proposed algorithm exploits this idea and solves this class of optimization prob- 

lems from the viewpoint of multi-objective optimization. The algorithm computes an optimal solution 

when the number of variables in the multi-linear objective function is two, and an approximate solution 

when the number of variables is greater than two. A computational study demonstrates that when avail- 

able computing time is limited the algorithm significantly outperforms well-known convex programming 

solvers IPOPT and CVXOPT, in terms of both efficiency and solution quality. The optimization problems in 

this class can be reformulated as second-order cone programs, and, therefore, also be solved by second- 

order cone programming solvers. This is highly effective for small and medium size instances, but we 

demonstrate that for large size instances with two variables in the multi-linear objective function the 

proposed algorithm outperforms a (commercial) second-order cone programming solver. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In this paper, we study optimization problems of the form, 

max 
p 

�
i =1 

y i 

s.t. y = D x + d 

A x ≤ b 

x , y ≥ 0 , x ∈ R 

n , y ∈ R 

p , 

with D a p × n matrix, d a p -vector, A an m × n matrix, and b an 

m -vector. Such optimization problems often arise in game theory 

settings where the x variables represent players’ actions and the 

y variables represent players’ utilities. Examples include comput- 

ing the Nash solution to a bargaining problem ( Nash, 1950, 1953 ) 

and computing an equilibrium of a linear Fisher or a Kelly capac- 

ity allocation market ( Chakrabarty et al., 2006; Eisenberg and Gale, 

1959; Jain and Vazirani, 2007; Vazirani, 2012a ). 

∗ Corresponding author. 

E-mail addresses: hcharkhgard@usf.edu , h.charkhgard@gmail.com 

(H. Charkhgard). 

We will refer to such an optimization problem as a positive 

multi-linear program with affine constraints (PMP-A). A PMP-A can 

both be seen as an extension of a linear programming problem and 

as a special case of a geometric programming problem. We refer 

to the set X := { x ∈ R 

n : A x ≤ b , x ≥ 0 } as the feasible set in the de- 

cision space and to the set Y := { y ∈ R 

p : x ∈ X , y = D x + d , y ≥ 0 } 
as the feasible set in the payoff space . We assume that X is bounded 

(which implies that Y is compact) and that the optimal objective 

value of the problem is strictly positive, i.e., there exists a y ∈ Y
such that y > 0 . We usually refer to x ∈ X as a feasible solution 

and to y ∈ Y as a feasible point ( y is the image of x in the pay- 

off space). We note that, at first glance, the problem appears to 

be closely related to multiplicative programs (for more informa- 

tion on multiplicative programs, see for instance Gao et al. (2006) ; 

Ryoo and Sahinidis (2003) ; Shao and Ehrgott (2014,2016) . Specifi- 

cally, by changing the objective function of a PMP-A from max to 

min a multiplicative program is obtained. However, for this to be 

a reformulation, it is necessary to require that the variables in the 

objective function take on only non-positive values, which violates 

the definition of a multiplicative program. Moreover, it is known 

that a multiplicative program is NP-hard ( Shao and Ehrgott, 2016 ), 

but a PMP-A can be solved in polynomial time. Furthermore, for 

multiplicative programs, it is known that there exists an optimal 
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solution that is an extreme point of polyhedron Y ( Shao and 

Ehrgott, 2016 ), which can be exploited to develop custom-built al- 

gorithms. Unfortunately, this property does not hold for a PMP-A. 

It can be shown that a PMP-A has a unique optimal point ( Nash, 

1950 ). We denote an optimal solution and the optimal point of a 

PMP-A by x ∗ and y ∗, respectively. Finally, we assume that x ∗ and 

y ∗ are rational. Moreover, it is easy to see that x ∗ is an efficient 

(or Pareto optimal) solution , i.e., a solution in which it is impossi- 

ble to improve the value of a player’s payoff without a deteriora- 

tion in the value of at least one other player’s payoff, and, conse- 

quently, y ∗ is a nondominated point (the image of an efficient solu- 

tion in the payoff space is called a nondominated point) ( Ehrgott 

and Gandibleux, 2007; Eusébio et al., 2014 ). 

A convex programming solver, for example one that uses an in- 

terior point method, can find an optimal solution to a PMP-A in 

polynomial time ( Grötschel et al., 1988 ). Note that because we have 

assumed that the optimal value is positive, it is possible to use ∑ p 
i =1 

log y i as the objective function. However, because convex pro- 

gramming solvers are significantly slower than (commercial) linear 

programming solvers, it may be possible to develop a linear pro- 

gramming based algorithm that performs better in practice. That 

is exactly what we do. 

The main contribution of our research is the development of 

a linear programming based (LP-based) algorithm for solving in- 

stances of PMP-A. When the number of variables in the multi- 

linear objective function is two (i.e., p = 2 ), the algorithm com- 

putes an optimal solution in polynomial time, and when the num- 

ber of variables is greater than two the algorithm computes an 

approximate solution (but with a quality guarantee). A compu- 

tational study demonstrates that when available computing time 

is limited our algorithm significantly outperforms the well-known 

convex programming solvers IPOPT and CVXOPT. A PMP-A can be 

reformulated as a second-order cone program (SOCP), and, there- 

fore, solved by any SOCP solver. The SOCP approach works well and 

outperforms the LP-based algorithm on small to medium size in- 

stances. For large size instances with p = 2 , however, the LP-based 

algorithm still dominates. 

Vazirani (2012b ) was the first to present an LP-based algorithm 

for solving a PMP-A with a bilinear objective function (i.e., p = 2 ), 

the Binary Search Algorithm (BSA). However, BSA cannot be eas- 

ily extended to handle a multi-linear objective function with more 

than two variables (i.e., p > 2). Both BSA and our algorithm work 

in the payoff space, but in different ways. BSA searches the payoff

space for a facet of Y containing the optimal point (note that in 

two dimensional space, facets are line segments) and, once found, 

computes the optimal point. Our algorithm searches the payoff

space by iteratively removing sections of Y that are guaranteed 

not to contain the optimal point. In the process, a lower and up- 

per bound on the optimal objective value are continuously updated 

until they have converged to the same value (when p = 2 ). 

We note that PMP-As do not only arise in game theory. At the 

end of the paper, we briefly mention applications of PMPs-A in 

other fields of study, including geometry, statistical estimation, ap- 

proximation, and polynomial programming. 

The remainder of the paper is organized as follows. In Section 2 , 

we introduce some well-known applications of PMPs-A in game 

theory. In Section 3 , we detail the logic of our proposed algorithm. 

In Section 4 , we report on the results of a computational study. In 

Section 5 , we introduce applications of PMPs-A in other fields of 

study. Finally, in Section 6 , we give some concluding remarks. 

2. Positive multi-linear programs with affine constraints 

arising in game theory 

We present three well-known game theoretic settings that give 

rise to PMP-As. We refer the interested readers to Chakrabarty 

et al. (2006) ; Eisenberg and Gale (1959) ; Jain and Vazirani (2007) ; 

Vazirani (2012a ) for further information and more details. 

2.1. Bargaining problems 

A bargaining problem is a cooperative game in which all players 

agree to create a grand coalition, instead of competing with each 

other, to get a higher payoff ( Serrano, 2005 ). To be able to create 

a grand coalition, the agreement of all players is necessary. There- 

fore, a critical question to be answered is: What should the payoff

of each player be in a grand coalition? One of the solutions to the 

(symmetric) bargaining problem was proposed by Nash and is now 

known as the Nash bargaining solution ( Nash, 1950, 1953 ). 

We start by explaining the Nash bargaining solution in the case 

of two players. We denote the expected utility values of the play- 

ers by y = (y 1 , y 2 ) . Let Y be the 2-dimensional feasible set in the 

payoff space containing all possible expected utility values of the 

players. We assume that Y is compact and convex, and that it is 

given to us by an oracle in the form of a set of affine constraints. 

Let Y N be the nondominated frontier (i.e., the set of nondominated 

points) of Y . Let the disagreement point (or status quo), q := ( q 1 , 

q 2 ), in the payoff space represent the payoffs that the players will 

receive if they do not create the coalition. 

Two classical axioms imposing restrictions on a solution to a 

pure bargaining problem are 

• Individual Rationality: None of the players accepts a payoff

lower than the one which is guaranteed to him under disagree- 

ment, i.e., y 1 ≥ q 1 and y 2 ≥ q 2 . 
• Pareto Optimality: The solution must be such that the payoff for 

one player cannot be increased without decreasing the payoff

of the other player. 

Let Y 

∗ := { y ∈ Y : y 1 ≥ q 1 , y 2 ≥ q 2 } and Y 

∗
N 

:= { y ∈ Y N : y 1 ≥
q 1 , y 2 ≥ q 2 } . To satisfy the classical axioms, a bargaining solution 

y ∗ must be in Y 

∗
N . However, in general, Y 

∗
N still contains an infinite 

number of points. Nash introduced three additional axioms: 

• Symmetry: If Y 

∗ is symmetric, i.e., for any vector ( y , y ′ ) ∈ Y 

∗, 
the vector ( y ′ , y ) is also in Y 

∗, then in a bargaining solution we 

must have y ∗
1 

= y ∗
2 
. 

• Linear Invariance: Let y ∗ be a solution to a bargaining game G . 

Moreover, let ˆ G be a bargaining game obtained from G by an 

order-preserving linear transformation T of one player’s utility 

function. The solution 

ˆ u 

∗
to the bargaining game ˆ G has to be 

the image of y ∗ under T , i.e., ˆ u 

∗ = T y ∗. 
• Independence of Irrelevant Alternatives: Let q be the disagree- 

ment point and y ∗ be a solution to the bargaining game G . 

Moreover, let ˆ G be a bargaining game that is obtained from G 

by restricting Y to ˆ Y , i.e., ˆ Y ⊂ Y . If q ∈ 

ˆ Y and y ∗ ∈ 

ˆ Y , then y ∗ is 

the solution of ˆ G . 

Nash proved that under the above five axioms, the optimal so- 

lution y ∗ = ( y ∗1 , y 
∗
2 ) to the bargaining problem is the unique point 

satisfying 

y ∗ ∈ arg max { (y 1 − q 1 )(y 2 − q 2 ) : y ∈ Y, y 1 ≥ q 1 , y 2 ≥ q 2 } . 
Nash’s result can be extended to pure bargaining problems with 

p players ( p > 2) straightforwardly. Let Y be the p -dimensional fea- 

sible set in the payoff space, then for a disagreement point q = 

(q 1 , · · · , q p ) , the optimal solution y ∗ = (y ∗
1 
, · · · , y ∗p ) to the bargain- 

ing problem is a point satisfying 

y ∗ ∈ arg max 

{ p 

�
i =1 

(y i − q i ) : y ∈ Y, y i ≥ q i ∀ i ∈ { 1 , · · · , p} 
} 

. 

Kalai (1977) established that the Nash bargaining solution can 

be extended even further to nonsymmetric bargaining games. He 
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