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a b s t r a c t 

This work presents the stochastic local search method for the Swap-Body Vehicle Routing Problem (SB- 

VRP) that won the First VeRoLog Solver Challenge. The SB-VRP, proposed on the occasion of the challenge, 

is a generalization of the classical Vehicle Routing Problem (VRP) in which customers are served by ve- 

hicles whose sizes may be enlarged via the addition of a swap body (trailer). The inclusion of a swap 

body doubles vehicle capacity while also increasing its operational cost. However, not all customers may 

be served by vehicles consisting of two bodies. Therefore swap locations are present where one of the 

bodies may be temporarily parked, enabling double body vehicles to serve customers requiring a single 

body. Both total travel time and distance incur costs that should be minimized, while the number of cus- 

tomers visited by a single vehicle is limited both by its capacity and by a maximum travel time. State 

of the art VRP approaches do not accommodate SB-VRP generalizations well. Thus, dedicated approaches 

taking advantage of the swap body characteristic are desired. The present paper proposes a stochastic 

local search algorithm with both general and dedicated heuristic components, a subproblem optimization 

scheme and a learning automaton. The algorithm improves the best known solution for the majority of 

the instances proposed during the challenge. Results are also presented for a new set of instances with 

the aim of stimulating further research concerning the SB-VRP. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Swap-Body Vehicle Routing Problem (SB-VRP) was pro- 

posed by the EURO Working Group on Vehicle Routing and Lo- 

gistics Optimization (VeRoLog) and the PTV Group at the First 

VeRoLog Solver Challenge ( Heid et al., 2014 ). It is a generalization 

of the classical Vehicle Routing Problem (VRP) based on real prob- 

lems faced by industry. 

The classical VRP is one of the most studied problems in com- 

binatorial optimization and is defined under capacity and route 

length constraints ( Cordeau et al., 2007 ). The SB-VRP primarily dif- 

fers from the VRP insofar as vehicles consist of either one or 

two bodies (trailers). The lengthened vehicles are called trains and 

have exactly twice the capacity of the regular vehicles (trucks). 

Fig. 1 shows an example of a truck, a swap body (with a trailer) 

and a train, respectively. 

Customers have individual demands and must be served by ex- 

actly one vehicle. Three types of customers are considered: those 
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who can only be reached by trucks, those who can be served by 

both trains and trucks, and those whose demands exceed the ca- 

pacity of a truck and must be attended to by trains. Customers are 

geographically dispersed. Travel times and distances between all 

locations are given. 

In addition to the depot and customers’ locations, swap loca- 

tions are present, where one of the bodies of a train may be tem- 

porarily left, enabling the vehicle to serve customers with a single 

body (truck). 

The SB-VRP considers both total time and distance to derive 

costs that should be minimized. These costs vary depending on 

whether the considered vehicle is a train or truck. Furthermore, 

additional costs for operations at swap locations are also consid- 

ered. Vehicles routes are limited by both their capacity and a max- 

imum travel duration. 

The present paper proposes a stochastic local search heuris- 

tic approach to the problem. Initially, a naive solution is quickly 

built. Different intensification and diversification strategies are sub- 

sequently applied to improve the solution. These strategies in- 

clude a subproblem optimization scheme and different neighbor- 

hood structures, both of which are embedded in a metaheuristic 
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Fig. 1. Vehicle type examples. 

framework. A preprocessing procedure reduces the solution space 

and thus dramatically increases the heuristic’s efficiency. The 

stochastic local search won the First VeRoLog Solver Challenge and 

continues to outperform all other proposed approaches for the 

problem. 

The approach has significant practical relevance for a range of 

business activities including production, distribution and also the 

transportation sector more generally. The delivery of both perish- 

able and urgently-required goods (fuel, for example), which almost 

always necessitates transportation by road, becomes greatly opti- 

mized. Indeed, very often the transportation costs associated with 

such products are disproportionate when compared against the 

cost of the products themselves. Furthermore, the approach en- 

sures efficiency with regard to a number of important economic 

and ecological factors such as: the number of vehicles, number of 

drivers, travel distance and time, and the environmental impact. 

The present work is organized as follows. Section 2 details the 

problem. Section 3 presents a literature overview about the SB-VRP 

and related work. The proposed algorithm is introduced and de- 

scribed within Section 4 . The neighborhood structures considered 

for the local search are discussed in Section 5 . Section 6 presents 

computational experiments and, finally, Section 7 summarizes the 

conclusions and indicates future research directions. 

2. Problem description 

The SB-VRP is a generalization of the classical VRP and, by con- 

sequence, is an NP-Hard problem. It can be defined on a graph 

G = (V, A ) , where the vertices V are the locations and the arcs A 

are the connections between these locations. Three vertex cate- 

gories are considered: depot, customers and swap locations. A sin- 

gle depot vertex is defined. 

The customers, represented by the subset C ⊂ V , are divided into 

three groups: truck-only ( C 1 ⊆ C ), flexible ( C 2 ⊆C ) and train-only 

( C 3 ⊆C ). These groups are defined according to the types of vehi- 

cle that can be employed to visit the customers. Truck-only cus- 

tomers can only be attended to by trucks, flexible customers can 

have their demands satisfied by both trucks and trains, and train- 

only customers require trains. 

All customers i ∈ C have an associated demand q i and service 

time s i . These demands must be satisfied with exactly one visit. 

Since the capacity of a swap body is given by constant Q , truck- 

only and flexible customers’ demands must be bounded by Q , such 

that q i ≤ Q ∀ i ∈ C 1 ∪ C 2 . Contrastingly, train-only customers have de- 

mands that trucks cannot satisfy, therefore implying Q < q i ≤ 2 Q 

∀ i ∈ C 3 . 

Swap locations, represented by the subset S ⊂ V , are associated 

with neither demand nor service time. Nevertheless, depending on 

the operation executed at a swap location, a certain amount of 

time is consumed. In total, four operations are possible at a swap 

location, each consuming varying amounts of time: 

park : leaves the back swap body of the train at the swap loca- 

tion; 

exchange : leaves the front swap body of the train at the swap 

location; 

pickup : picks up the swap body that was left at a swap loca- 

tion; 

swap : leaves the currently attached swap body and picks up 

the swap body that was left at the swap location. 

Fig. 2. Graph representation of a small SB-VRP instance. 

As Miranda-Bront et al. (2017) have highlighted, the consumed 

capacity of the bodies may be distributed across routes such that 

the first action on a swap location is always park. Exchange gener- 

ally requires more time than park , and thus employing park rather 

than exchange results in less time spent in a swap location. 

Each arc ( i, j ) ∈ A connects location i to location j , has a distance 

d ij and a travel time t ij . Note that the distances and travel times 

are asymmetric, meaning d ij and t ij are not guaranteed to be equal 

to d ji and t ji respectively. 

Fig. 2 shows a graph representation of a small SB-VRP instance. 

Triangles represent swap locations, squares indicate truck-only cus- 

tomers, filled circles denote flexible customers and, finally, open 

circles identify train-only customers. 

Vehicles must leave and return to the depot with the same 

swap bodies. Crucially, routes must begin and end in the depot and 

swap bodies may not be exchanged between vehicles. Therefore, if 

a vehicle leaves a swap body in a swap location, the body must 

be retrieved later by the same vehicle. Henceforth, the part of the 

route that comprises of the customers between the two swap lo- 

cation visits will be referred to as a sub-route. 

All routes must respect capacity constraints and a maximum 

route duration T . Each route’s duration is given by the sum of its 

travel times, service times and swap operation times. 

In the SB-VRP considered the objective is to minimize the total 

operation cost, given by the sum of two components: 

vehicle/driver costs : consisting of a fixed cost for using a 

vehicle, a cost per kilometer traveled and a cost per hour 

(driver’s cost); 

swap body costs : consisting of a fixed cost per additional swap 

body and a cost per kilometer traveled with it. 

A sample solution for the problem depicted by Fig. 2 is shown 

in Fig. 3 . This example employs three vehicles: one truck and two 

trains. Note that one of the routes (route 3) contains a sub-route, 

therefore indicating it utilizes a swap location. The swap location 

temporarily stores one of the vehicle’s swap bodies, while it visits 

two truck-only customers. After visiting these two customers (or 

directly before finishing the sub-route), the vehicle reattaches the 

parked body and continues towards the next customers. 

3. Literature review 

The SB-VRP considered by this work was introduced recently 

in the literature. Huber and Geiger (2014) addressed the SB-VRP 

with an iterative variable neighborhood search (VNS) procedure. 

They employed a cluster-first route-second approach to produce 

initial solutions. Both sequential and parallel versions of the al- 

gorithm were evaluated. Lum et al. (2015) applied a VRP-Reduce 
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