
Computers and Operations Research 89 (2018) 82–93

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Compressed data structures for bi-objective {0,1}-knapsack problems

Pedro Correia

a , b , ∗, Luís Paquete

a , José Rui Figueira

b

a CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
b CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 20 June 2016

Revised 11 August 2017

Accepted 13 August 2017

Available online 17 August 2017

Keywords:

Multi-objective optimization

Implicit enumeration techniques

a b s t r a c t

Solving multi-objective combinatorial optimization problems to optimality is a computationally expen-

sive task. The development of implicit enumeration approaches that efficiently explore certain properties

of these problems has been the main focus of recent research. This article proposes algorithmic tech-

niques that extend and empirically improve the memory usage of a dynamic programming algorithm for

computing the set of efficient solutions both in the objective space and in the decision space for the

bi-objective knapsack problem. An in-depth experimental analysis provides further information about the

performance of these techniques with respect to the trade-off between CPU time and memory usage.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Dealing with a large amount of solutions for further processing

is a key concern in the field of multi-objective combinatorial op-

timization. Such processing include, for example, gathering or pro-

ducing a collection of data sets within a limited memory (internal

or external), extraction of important pieces of information from the

whole data, manage the data, which deals with several operations,

and process these operations in a reasonable amount of CPU-time.

These aspects require the use of efficient data structures.

Solution methods for multi-objective combinatorial optimiza-

tion (MOCO) problems typically require a large usage of mem-

ory resources. Parametric and recursive programming (Ebem-

Chaime, 1996; Przybylski et al., 2010), approximation methods

(Erlebach et al., 2002), metaheuristics (Köksalan and Phelps, 2007),

or exact methods (Bazgan et al., 2009b; Delort and Spanjaard,

2013; Figueira et al., 2013) are example of approaches that require

more memory usage due to the large number of potential solu-

tions that need to be kept during the search process. For instance,

the experimental analysis reported in Figueira et al. (2013) shows

that more than five million solutions need to be kept in mem-

ory in order to solve bi-objective knapsack problem instances

with less than one thousand items; see similar results reported

in Paquete et al. (2013) for a related problem and using a sim-

ilar approach. Noteworthy, the implementations described in the

literature only keep the outcome vectors in the objective space

∗ Corresponding author at: Departamento de Engenharia Informática Faculdade

de Ciências e Tecnologia Universidade de Coimbra Pólo II - Pinhal de Marrocos

3030-290 Coimbra Portugal.

E-mail addresses: pamc@dei.uc.pt (P. Correia), paquete@dei.uc.pt (L. Paquete),

figueira@tecnico.ulisboa.pt (J.R. Figueira).

in memory, as for example, the algorithms by Bazgan et al.

(2009b) and Figueira et al. (2013) . Therefore, the memory require-

ments for keeping also the solutions should be much larger than

those reported in the literature, making it infeasible for the usual

memory capacity of current personal computers.

In this paper, we consider the bi-objective knapsack problem

(BOKP). Several approaches to solve the BOKP exactly or with a

good approximation quality have been proposed. Klamroth and

Wiecek (20 0 0) suggested five models to solve multi-objective inte-

ger knapsack problems (MOIKP). Each model is based on a network

in which each state represents the set of all non-dominated solu-

tions of a sub-problem. The authors show how these models can

be adapted to different variants of the knapsack problem. Modeling

the BOKP into a bi-objective shortest path problem over an acyclic

network was proposed in Captivo et al. (2003) . The model was

solved by using a labeling algorithm. Three complementary domi-

nance relations were proposed in Bazgan et al. (2009b) to be used

in a dynamic programming algorithm. These relations were applied

amongst potential solutions and used to fathom states that do not

lead to efficient solution. The quality of the fathoming process of

Bazgan et al. (2009b) was improved in Figueira et al. (2013) by

proposing new prunning techniques for such a method. Delort and

Spanjaard (2013) proposed a technique using an hybrid dynamic

programming approach for a two phased algorithm to solve the

BOKP. Some approaches provide quality guarantee approximations

for the BOKP. In Erlebach et al., 2002 a fully polynomial time ap-

proximation scheme (FPTAS) scheme was developed to guarantee

that for each efficient solution, another that is at most at a factor

(1 + ε) on all objective values is found. Bazgan et al. (2009a) pro-

posed the usage of dominance relations to develop a new FPTAS

scheme to solve the BOKP.

http://dx.doi.org/10.1016/j.cor.2017.08.008

0305-0548/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2017.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.08.008&domain=pdf
mailto:pamc@dei.uc.pt
mailto:paquete@dei.uc.pt
mailto:figueira@tecnico.ulisboa.pt
http://dx.doi.org/10.1016/j.cor.2017.08.008

P. Correia et al. / Computers and Operations Research 89 (2018) 82–93 83

In this paper we study the impact of using different data struc-

tures in the case of the bi-objective knapsack problem when solu-

tions in the space of decision variables (e.g. , a binary string) should

be kept in memory. Two main data structures are investigated:

Binary decision diagrams (Akers, 1978) and differencing methods

based on spanning tree structures (Kang et al., 1977). Although

these techniques are well-known, they have never been applied

in the context of compression of solutions during the optimiza-

tion process in a multi-objective framework. For benchmark pur-

pose, we compare them against more naïve approaches, such as

compression algorithms based on the Lempel–Ziv–Welch variant

(Welch, 1984). We remark that any compression procedure has a

significant overhead on CPU-time, even if the update is performed

incrementally. Therefore, we are interested in understanding the

effect of these techniques in terms of the trade-off between mem-

ory and CPU-time. In fact, our computational results suggest that

some of these techniques can be located in different places of this

trade-off.

This paper is organized as follows. Section 2 provides theoret-

ical background. Section 3 is devoted to the presentation of the

data structures implemented. Section 4 deals with other methods

developed for benchmarking purposes. Section 5 presents a com-

putational study. Finally, some conclusions and avenues for future

research are provided.

2. Theoretical background

In the following, we present the fundamental concepts, defini-

tions, and notation for MOCO problems and for the bi-objective

knapsack problem as well as the fundamental framework needed

for our algorithmic developments, with an illustrative example.

2.1. Fundamental concepts, definitions and notation

Let “ max ”{ z 1 (x) , . . . , z m

(x) , . . . , z d (x) : x ∈ X} denote the

mathematical programming formulation of the generic linear

MOCO problem, where d ≥ 2 is the number of linear objective func-

tions, x represents a vector of decision variables , (x 1 , . . . , x j , . . . , x n) ,

and X is the feasible set (or region) in the decision space {0, 1} n ,

in general resulting from the intersection of a set of linear con-

straints. Note that z m

: X → R , for all m = 1 , . . . , d. Note also that

z (x ′), or simply z ′ , is the outcome vector with respect to solution

x ′ . The feasible set is a finite set or it possesses a countable

discrete structure. The elements x ∈ X are characterized by some

combinatorial properties (permutations, combinations, etc.). The

“max ” operator used in above definition of a MOCO problem is

mathematically not meaningful since it is impossible to maximize

all the objective functions at the same time; it barely serves here

to state that each objective function is to be maximized. Since

generally the objectives are conflicting each other, and there is

no common optimal solution for all the objective functions, it

leads to a different im portant concept of optimality, which can be

derived from the binary relation defined below. (See chap. 6 in

Steuer, 1986 .)

Definition 1 (Dominance) . Let z ′ , z ′′ ∈ R

d denote two outcome vec-

tors. Then, z ′ dominates z ′ ′ , denoted by z ′ �z ′ ′ , if and only if z ′ m

�

z ′′ m

, for all m = 1 , . . . , d with at least one strict inequality.

Let Z ⊂ R

d denote the image of the feasible set X in the ob-

jective space . Let N (Z) denote the whole set of non-dominated

outcome vectors ; Z � = { z ∈ R

d : z ≤ 0 } denote the negative cone

formed by all the possible coordinates of the negative orthant;

Z �

z̄
= z̄ � Z � denote the displaced cone Z ≤ at point z̄ ; ˆ Z = { z ∈

R

d : z ∈ Z �

z̄
for all z̄ ∈ N(Z) } denote the set formed by Z �

z̄
for all

z̄ ∈ N(Z) ; Z = conv (̂ Z) denote the convex hull of ˆ Z ; int (Z) denote

the interior of Z; and bd (Z) the boundary of Z . Now, we can eas-

ily distinguish between supported non-dominated outcome vectors ,

those that belong to N (Z) and are placed in bd (Z) , which can eas-

ily be computed, for example, by the approach proposed by Ebem-

Chaime (1996) , and unsupported non-dominated vectors , those that

belong to N (Z) and are located in int (Z) . Let E (X) denote the set of

efficient solution s in the decision space, the image of which is N (Z).

Note that | E (X)| ≥ | N (Z)|.

2.2. The bi-objective { 0 , 1 }−knapsack problem

The bi-objective {0, 1} -knapsack problem (BOKP) can be stated

as follows. (See chap. 10 in Ehrgott, 2005 .)

maximize z 1 (x 1 , . . . , x j , . . . , x n) =

n ∑

j=1

c 1 j x j

maximize z 2 (x 1 , . . . , x j , . . . , x n) =

n ∑

j=1

c 2 j x j

subject to:

n ∑

j=1

w j x j � W

x j ∈ { 0 , 1 } , j = 1 , . . . , n.

(BOKP)

where x j are the {0, 1} decision variables (unknowns), c m

j
are the

coefficients of such variables in the linear objective functions, w j

are the weights of variables x j in the linear (side) constraint, j =

1 , . . . , n, m = 1 , 2 , and W is the right-hand side of the constraint.

To avoid trivial solutions, we assume that the data parameters of

this model are positive integers.

2.3. Branching programs and binary decision trees

We describe the branching program for building a binary deci-

sion tree that generates the efficient set to a given BOKP instance.

This is the basis of the most efficient dynamic programming ap-

proaches for this problem (Bazgan et al., 2009b; Figueira et al.,

2013; Klamroth and Wiecek, 20 0 0).

Definition 2 (Binary decision tree) . A binary decision tree (BDT) is

a rooted binary tree organized by levels, j = 0 , . . . , n, where n + 1

is its depth . The level 0 contains the root vertex and each of the

following levels, j = 1 , . . . , n, contains vertices that are at distance

j to the root. Every non-leaf vertex v has at most two children,

denoted by S 0 (v) and S 1 (v), and a parent denoted by F (v), except if

it is the root vertex.

Procedure 1 provides the main algorithmic procedure to solve a

BOKP instance, which is referred to as P . Lists L j , j = 0 , . . . , n repre-

sent ordered lists of sub-problems generated at iteration j . Problem

P
j

i
, i = 1 , . . . , | L j | is the sub-problem i at iteration j . Note that P 0

1
corresponds to the original instance P . The procedure is based on

two main phases: branching and pruning. In the branching phase

of each iteration j , for j = 1 , . . . , n, every sub-problem is separated

in two, by fixing x j = 0 and x j = 1 . Line 7 of Procedure 1 repre-

sents the branching phase, which is performed for each problem in

the list generated at iteration j − 1 , L j−1 . Note that after pruning,

both generated problems are enqueued to the list of generation j,

L j (line 8 and 9). In the pruning phase, each sub-problem is sub-

ject to four pruning rules that are used to discard sub-problems,

as stated in Definition 3 . Line 10 shows the pruning step. Note that

the procedure returns both sets E (X) and N (Z) of instance P , which

are extracted from list L n in line 11.

The procedure is implemented by keeping a list R j that, at the

end of each iteration j , for j = 1 , . . . , n, contains a list of partial so-

lutions with fixed values of x 1 , . . . , x j . A partial solution at iteration

Download English Version:

https://daneshyari.com/en/article/4958954

Download Persian Version:

https://daneshyari.com/article/4958954

Daneshyari.com

https://daneshyari.com/en/article/4958954
https://daneshyari.com/article/4958954
https://daneshyari.com

