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a b s t r a c t 

This article presents new methods for the block relocation problem (BRP). Although much of the existing 

work focuses on the restricted BRP, we tackle the unrestricted BRP, which yields more opportunities for 

optimisation. Our contributions include fast heuristics able to tackle very large instances within seconds, 

fast metaheuristics that provide very competitive performance on benchmark data sets, as well as a new 

lower bound that generalises existing ones. We embed it in a branch-and-bound algorithm, then assess 

the influence of various factors on the efficiency of branch-and-bound algorithms for the BRP. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In a world where container port traffic increases steadily 

( The World Bank, 2014 ), the optimisation of logistics at container 

terminals is more relevant than ever. Containers are typically 

stored in stacks between their arrival at the terminal and their 

departure when a vehicle picks them up. Similarly, at steel pro- 

duction factories, slabs are stored in stacks between their produc- 

tion and the time when they are picked up by a vehicle for further 

delivery. In both contexts, space is limited and the way items are 

stacked, be they containers or slabs, has an impact on productivity. 

In both cases it is possible to reorganise stacks with a crane in or- 

der to improve productivity. For this reason, optimisation problems 

related to loading, unloading and premarshalling of stacks in stor- 

age areas have been the subject of increasing attention over the 

last few years, as emphasised in a recent survey by Lehnfeld and 

Knust (2014) . In this article we provide new insights on the block 

relocation problem (BRP), which is an unloading problem which 

we succinctly describe now. 

A set of n items, usually called blocks or containers, are organ- 

ised into W stacks and have to be retrieved in a certain order. It is 

usually considered that item 1 has to be retrieved first, then item 

2, and so on until item n . An item may only be retrieved if it is on 

top of its stack. Otherwise, the items that block it (i.e. are above 

it) must be relocated to another stack first. A relocation involves 

taking an item from the top of a stack and putting it on top of 

another stack. Additionally, stacks may not exceed a certain height 
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H max . The goal is to retrieve all items while minimising the total 

number of relocations required to do so. 

It is possible to represent the BRP using a graph: to each con- 

figuration of the items in the bay, which we call a state , we asso- 

ciate a node. To each possible relocation from one state to another, 

we associate an arc with weight 1. To each possible retrieval of 

an item, also representing a transition from one state to another, 

we associate an arc with weight 0. Considering the set V of all 

nodes (possible states) and the set A of all arcs (possible transi- 

tions between those states), we obtain a directed graph G = (V, A ) . 

The shortest path from the initial state (source) to the empty state 

(sink) then yields the optimal solution to the BRP. An example of 

this graph representation is given in Appendix A . However the size 

of V and A grows exponentially with the number of items and the 

number of stacks. It is therefore impractical to consider this whole 

graph explicitly. Any optimisation method for the BRP consists in 

finding a path from source to sink while exploring only a subset of 

the whole graph. 

The contribution of this article is fourfold. First, we develop 

new heuristic operations to quickly build high quality solutions 

for the BRP. Second, we design a new constructive metaheuristic 

framework to use these operations in an even more efficient way, 

trading a bit of CPU effort for increased solution quality. Third, we 

develop a new lower bound for the BRP, which generalises pre- 

viously known lower bound. Fourth, we conduct an extensive ex- 

perimental study of all introduced mechanisms. This study allows 

us to define desirable features of branch-and-bound algorithms for 

the BRP, and shows that all developed heuristic components con- 

tribute to solving the BRP more efficiently. 

The remainder of this article is organised as follows. In 

Section 2 , we quickly survey recent literature on the BRP. In 
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Section 3 we present various heuristic methods for the unre- 

stricted BRP. In Section 4 we introduce a new lower bound and 

present a branch-and-bound algorithm for the unrestricted BRP. 

Section 5 contains experimental validation for our contributed op- 

timisation methods. Finally, we draw some conclusions and outline 

further research directions. 

2. Literature review 

The BRP has received notable attention in the last few years. 

In their recent survey, Lehnfeld and Knust (2014) present an 

overview of the scientific literature on loading, unloading and pre- 

marshalling problems. Using their terminology, the BRP is an un- 

loading problem. They make a difference between forced moves , 

that involve relocating items blocking the next item to be removed, 

and voluntary moves , that involve any other type of relocation. Vol- 

untary moves are also called cleaning moves by Petering and Hus- 

sein (2013) . We want to emphasise this difference here since most 

of the existing contributions only consider forced moves. Put dif- 

ferently, the assumption is that the only items that may be relo- 

cated are those blocking the next item to be retrieved. From now 

on, we call this assumption A1, as named by Caserta et al. (2012) . 

The BRP under assumption A1 is the restricted BRP, otherwise it is 

the unrestricted BRP. It should be noted here that under assump- 

tion A1, only two situations can occur: (i) Either the next item to 

be retrieved is on top of a stack, in which case it is retrieved; (ii) 

Or there are items blocking it, in which case these items are relo- 

cated. In that context, the only decision making that can be done is 

determining to which other stack these items should be relocated. 

The BRP is first introduced by Kim and Hong (2006) . They 

consider the now-common BRP setting where every item has a 

different priority, as well as a setting where priorities are given 

to groups of items. Their work is under assumption A1, i.e. only 

forced moves are considered. The authors propose a branch-and- 

bound algorithm to solve instances with up to 30 items and 6 

stacks within less than one hour. They also design a heuristic rule 

to relocate items, that estimates the expected number of additional 

relocations needed after a certain relocation and greedily selects 

the relocation minimising that number. This heuristic produces so- 

lutions within one or two seconds and ranges on average between 

2% and 16% from the optimum, depending on instance classes. 

Lee and Lee (2010) present a three-phase heuristic for a BRP 

where the objective function also considers the distance between 

stacks. Assumption A1 is also made. In the first phase, a solution 

is constructed heuristically. In the second phase, the number of re- 

locations is reduced by merging relocations of same items. This 

is performed using a mixed-integer program (MIP). In the third 

phase, a consideration of distance between stacks is added to a 

simplified version of the MIP from phase 2. 

Caserta et al. (2011) also use assumption A1 and design a corri- 

dor method algorithm. The corridor method is a heuristic frame- 

work that explores limited amount of solutions within an exact 

framework, similar to what is done in beam search. In that case, 

the exact framework is a dynamic programming algorithm. 

Jovanovic and Voss (2014) propose a chain heuristic that con- 

siders the next two items to be relocated and avoids to relocate 

the first one to the stack that is the best for the second one. 

This is under assumption A1. The authors insist on the difference 

between simple and complex methods. Simple methods typically 

compute within less than a second. They compare this method 

to other previous contributions, notably Wu and Ting (2010) and 

Caserta et al. (2012) , and show that their chain heuristic performs 

better than the other simple heuristics. The best results reported 

are from the beam search of Wu and Ting (2010) , but at the ex- 

pense of CPU effort. 
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Fig. 1. For H max = 4 , optimal solution with assumption A1 has 6 reloca- 

tions but optimal solution without A1 has 4 relocations. Example taken from 

Caserta et al. (2012) . 

Wu and Ting (2010) develop a beam search algorithm for the 

BRP with assumption A1. The beam search is based on a breadth- 

first branch-and-bound algorithm. Using a depth-first scheme in- 

stead, the authors also propose a branch-and-bound algorithm. 

They also propose three heuristic rules to determine where the 

next item should be relocated. 

Tanaka and Takii (2014) introduce a new lower bound for the 

restricted BRP. This lower bound is not applicable to the unre- 

stricted BRP since it relies on the fact that items blocking the 

next item to remove have to be relocated next. Integrating it into 

a branch-and-bound algorithm, they show that their new lower 

bound improves the performance of branch-and-bound on the re- 

stricted BRP. 

Caserta et al. (2012) provide a complexity study of the BRP. 

They prove that the BRP is NP-hard for any finite H max and W < n . 

They then formulate two MIP models, BRP-I and BRP-II. BRP-I con- 

siders all possible relocations while BRP-II follows assumption A1. 

They also provide a simple example that emphasises that assump- 

tion A1 implies losing optimality. We reproduce this example in 

Fig. 1 . However, only model BRP-II is tested, so there is no assess- 

ment of the cost of assumption A1. Finally, the authors also provide 

a simple heuristic under assumption A1. 

Expósito-Izquierdo et al. (2015) correct the BRP-II model from 

Caserta et al. (2012) , then present a new branch-and-bound algo- 

rithm for the restricted BRP. The branch-and-bound is compared to 

the A 

∗ algorithm from Expósito-Izquierdo et al. (2014) and results 

show that the newer method is faster. 

Zehendner et al. (2015) present an improved mathematical for- 

mulation for the restricted BRP. They first correct the BRP-II model 

from Caserta et al. (2012) , then provide an alternative model with 

less variables. This allows them to reduce CPU effort and to solve 

more instances than with the corrected BRP-II. 

Forster and Bortfeldt (2012) develop methods for the unre- 

stricted BRP where priorities are given to groups of items rather 

than to single items. They first develop an improved lower bound, 

compared to previous contributions simply considering the num- 

ber of items that need to be relocated. They also develop a con- 

struction heuristic that applies what they call BG moves. BG stands 

for Bad-Good and involves the relocation of an item which was 

previously blocking another item into a stack where it does not 

block any item. If BG moves can be performed then they are per- 

formed, with a priority given to moves to a non-empty stack. A 

tree search is also presented. In order to keep CPU effort low, only 

certain moves are considered, so the method is similar to a beam 

search. BG moves are always preferred within this tree search pro- 

cedure. The authors then compare their method to previous contri- 

butions, although these previous contributions are considering the 

restricted BRP. 

Petering and Hussein (2013) consider the BRP without assump- 

tion A1. They first develop a MIP model, called BRP-III, with con- 

siderably less variables than BRP-I from Caserta et al. (2012) . Al- 

though it provides a lower bound of worse quality than BRP-I, BRP- 

III still performs better on average. Still, the authors conclude that 

a mathematical programming approach is not sufficient for real- 
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