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a b s t r a c t 

Quantum Annealing was previously applied to the vehicle routing problem and the results were promis- 

ing. For all benchmark instances in the study, optimal results were obtained. However, 100% success rate 

was not achieved in every case, and tuning the control parameters for larger instances proved cumber- 

some. This work addresses these remaining difficulties. An empirical approach is taken wherein measure- 

ments of run-time behaviour are exploited to transform existing good values of control parameters so 

that they can be used successfully for other problem instances. The course of this work shows a method 

which simplifies hand-tuning so that the heuristic performs successfully when applied to larger instances, 

and also demonstrates a tuning method which establishes control parameter values for instances which 

belong in broadly defined groupings. In addition, new best known solutions for large-scale instances, and 

initial results for the distance-constrained variant of the vehicle routing problem are presented. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Previous research Crispin and Syrichas (2013) demonstrated the 

effectiveness of Quantum Annealing (QA) for solving many in- 

stances of the Capacitated Vehicle Routing Problem (CVRP). Opti- 

mal results were obtained for all benchmark instances by apply- 

ing a single set of values for the algorithm’s control parameters - 

values which were methodically determined to achieve the maxi- 

mum success rate for a reference instance. The success rate is the 

percentage of the number of times the algorithm finds the best 

known score for a given instance over a number of runs. 

Table 1 shows an excerpt of the instances for which this param- 

eter set was unable to achieve 100% success rate. (An indication of 

the complexity of each instance can be inferred from the name. 

P-n101-k4 for example, has 101 nodes/customers served by 4 vehi- 

cles whereas M-n121-k7 has 121 served by 7.) Notably, the scores 

for smaller instances were much lower than for the reference in- 

stance. This is contrary to intuition, that one might expect param- 

eters giving the best results for a larger instance would perform 

easily as well for smaller instances. (One may expect also that pa- 

rameters for smaller instances will not work well for larger ones.) 

Given that the local search method is effective enough to allow the 

metaheuristic to find the optimal solution in at least 11% of the 

∗ Corresponding author. 

E-mail address: alex.syrichas@gmail.com (A. Syrichas). 

experiments, and that many of the instances appear less complex 

than the reference, one can conclude that the values of the control 

parameters are incorrect. If the temperature value is set too high 

or the magnetic field is too strong, convergence to a minimum is 

slowed down or inhibited completely. If set too low, the rate of 

convergence is high and entrapment at poor local minima is likely. 

If the population size is too small, the search of solution space cov- 

ers only a reduced area which may not contain optimal solutions. 

It seems clear that the universal application of a single set of con- 

trol parameters will not guarantee consistently good performance 

and the algorithm requires tuning on a case-by-case basis. 

How then does one tune metaheuristic control parameters for 

best results? One could apply the tuning methodology for every 

instance, providing a specific set of control parameters for each. 

To save time, the processes of the methodology could be captured, 

encoded, and then left to a computer program to automatically 

decide the parameters. These approaches work because feedback 

can be derived from information known beforehand about the op- 

timal result. Benchmark instances are often supplied with deter- 

ministically proven optimal solutions. However, for larger bench- 

marks, and in dynamic or industrial applications where problem 

instances are created in real-time, such information is limited or 

non-existent. 

Additional tuning difficulties are presented by metaheuristics 

with two or more control parameters, each of which may be tightly 

interdependent. For example, the coupling term used in QA is a 
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Table 1 

Computational results excerpt. 

Instance QA Success % SA Success % 

P-n101-k4 (reference) 100 100 

P-n50-k10 63 28 

P-n55-k10 35 31 

P-n60-k15 79 79 

P-n70-k10 78 61 

P-n76-k4 52 44 

P-n76-k5 87 22 

B-n63-k10 26 25 

B-n66-k9 91 44 

B-n67-k10 42 88 

B-n68-k9 69 87 

B-n78-k10 97 99 

M-n121-k7 90 76 

F-n135-k7 11 4 

non-linear function of magnetic field strength and effective tem- 

perature. This term is extremely sensitive to variations in either 

parameter, and tuning is further complicated because the Metropo- 

lis criteria ( Metropolis et al., 1953 ) is simultaneously dependent 

upon temperature. A Design of Experiments (DoE) method ( Ridge 

and Kudenko, 2010 ) can be helpful in uncovering major dependen- 

cies between such variables, but a course of factorial experiments 

can be time-consuming, and predicting the ranges for numerous 

and sensitive variables is difficult without once again resorting to 

guesswork or serially hand-tuning. 

It is for reasons like these that metaheuristics with fewer con- 

trol parameters are attractive - they are simpler to tune. Late Ac- 

ceptance Hill Climbing ( Burke and Bykov, 2017 ) has a single param- 

eter controlling the size of a fitness array which acts as a ‘memory’ 

of good solutions. Cuckoo Search is reported ( Nie et al., 2014 ) to 

be superior to Genetic Algorithms in part because of having only 

two parameters - nest abandonment rate and population size. In 

QA, it has been shown ( Titiloye and Crispin, 2011 ) that the num- 

ber of parameters can be reduced by one, by setting the mag- 

netic field value to be constant. This idea can be greatly extended 

by making the whole coupling term a constant, thereby removing 

the mutual dependence of the effective tem perature and magnetic 

field parameters. With the key parameters uncoupled from one an- 

other, time is saved when determining their values by hand. Large- 

scale problems and instances of the Distance-constrained Capac- 

itated Vehicle Routing Problem (DCVRP) may be tackled without 

tedium. Furthermore, if some means other than hand-tuning can 

predict the value of temperature, a single variable remains to be 

tuned - the replica count (population size). 

2. Quantum Annealing 

Quantum Annealing is an energy-based metaheuristic which 

uses the Path-Integral Monte Carlo (PIMC) method ( Battaglia et al., 

2005 ) to approximate the ground state of the Ising Model. The fit- 

ness function is described (1) by the Hamiltonian 

H = H p + H k (1) 

where the cost H is the sum of potential energy H p and fluctu- 

ations in kinetic energy H k . H k is the term which represents the 

quantum mechanical phenomenon of tunnelling, where a particle 

trapped in a low energy state, can ‘tunnel’ through high potential 

barriers into a lower state. This effect can be simulated in a meta- 

heuristic by using an Ising Model representation of the optimiza- 

tion problem. In simple terms, this is maintaining a population P 

of simultaneously evolving solutions called replicas, where H k is 

calculated from an interaction between adjoining replicas. 

When QA is applied to an optimization problem, H p takes the 

role of the cost of a solution (for VRP, see (4) ), while H k is a 

Fig. 1. Example of routes encoded as a spin matrix. Customer-customer connec- 

tions are represented using single bits. The matrix is encoded row-wise to form 

hexadecimal (Hex) words which stored in memory as an array. 

scaled sum of the spin interactions between P neighbouring solu- 

tions held in a circular list. 
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Each replica represents the solution as a spin matrix σ contain- 

ing i elements which can assume values of {−1 , +1 } . The interac- 

tion energy between the spins of adjoining replicas is generated by 

the term, σ
P−1 ,i 

σ
P,i 

σ
P+1 ,i 

J � is the coupling term which is normally varied during the an- 

nealing process via adjustments to the magnetic field strength Γ , 

amplifying or attenuating the interactions between replicas. 
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Consequently, this contributes towards the acceptance of H in 

the Metropolis criteria. 

2.1. QA for CVRP, and the PT tuning method 

CVRP is a variant of VRP in which all vehicles are subject to 

the same capacity constraint Q . CVRP is an undirected graph G = 

(V, E) consisting of the vertex set V = { v 0 , v 1 , . . . v n } and edge set 

E = { (v i , v j ) | v i , v j ∈ V, i < j} . The restriction i < j ensures the dis- 

tance between a pair of vertices is identical in both directions. The 

first vertex is usually considered to be the depot from which a fleet 

of trucks m serves n customers, whose locations are represented by 

a vertex set, and have varying demands for goods q i . The goal is 

to minimize the number of routes and/or total distance travelled 

by the trucks d ij . QA for CVRP (QACVRP) uses a two-dimensional 

spin matrix in which the elements represent customer-customer 

connections that form routes for each truck. A non-zero cell in 
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